Ivan B Ivanov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8625454/publications.pdf

Version: 2024-02-01

471509 434195 33 937 17 31 citations h-index g-index papers 33 33 33 1120 citing authors all docs docs citations times ranked

#	Article	IF	Citations
1	Exploring the role of promoters (Au, Cu and Re) in the performance of Ni–Al layered double hydroxides for water-gas shift reaction. International Journal of Hydrogen Energy, 2023, 48, 11998-12014.	7.1	7
2	Effect of support preparation method on water-gas shift activity of copper-based catalysts. International Journal of Hydrogen Energy, 2022, 47, 41268-41278.	7.1	3
3	Hydrogen production via water-gas shift reaction over gold supported on Ni-based layered double hydroxides. International Journal of Hydrogen Energy, 2021, 46, 458-473.	7.1	14
4	Improved Water–Gas Shift Performance of Au/NiAl LDHs Nanostructured Catalysts via CeO2 Addition. Nanomaterials, 2021, 11, 366.	4.1	9
5	Dual function of lectins â€" new perspectives in targeted photodynamic therapy. Journal of Porphyrins and Phthalocyanines, 2019, 23, 1241-1250.	0.8	9
6	Water–gas shift reaction over gold deposited on NiAl layered double hydroxides. Reaction Kinetics, Mechanisms and Catalysis, 2019, 127, 187-203.	1.7	7
7	Structure-activity relationship in water-gas shift reaction over gold catalysts supported on Y-doped ceria. Journal of Rare Earths, 2019, 37, 383-392.	4.8	22
8	Multicomponent Au/Cu-ZnO-Al2O3 catalysts: Robust materials for clean hydrogen production. Applied Catalysis A: General, 2018, 558, 91-98.	4.3	15
9	Temperature-programmed reduction of lightly yttrium-doped Au/CeO2 catalysts. Journal of Thermal Analysis and Calorimetry, 2018, 131, 145-154.	3.6	15
10	Promotional Effect of Gold on the WGS Activity of Alumina-Supported Copper-Manganese Mixed Oxides. Catalysts, 2018, 8, 563.	3.5	12
11	Synthesis and Mössbauer spectroscopic investigation of copper-manganese ferrite catalysts for water-gas shift reaction and methanol decomposition. Materials Research Bulletin, 2017, 95, 556-562.	5.2	12
12	NO reduction by CO over gold catalysts supported on Fe-loaded ceria. Applied Catalysis B: Environmental, 2015, 174-175, 176-184.	20.2	43
13	Nanosized gold catalysts on Pr-modified ceria for pure hydrogen production via WGS reaction. Materials Chemistry and Physics, 2015, 157, 138-146.	4.0	6
14	Synthesis of Improved Catalytic Materials for High-Temperature Water-gas Shift Reaction. Croatica Chemica Acta, 2015, 88, 475-480.	0.4	1
15	Viability of Au/CeO ₂ –ZnO/Al ₂ O ₃ Catalysts for Pure Hydrogen Production by the Water–Gas Shift Reaction. ChemCatChem, 2014, 6, 1401-1409.	3.7	21
16	Impact of Ce–Fe synergism on the catalytic behaviour of Au/CeO ₂ 6€"FeO _x /Al ₂ 0 ₃ for pure H ₂ production. Catalysis Science and Technology, 2013, 3, 779-787.	4.1	38
17	A Novel Cytokinin-Binding Property of Mistletoe Lectin I fromViscum Album. Biotechnology and Biotechnological Equipment, 2013, 27, 3583-3585.	1.3	2
18	Influence of the preparation method and dopants nature on the WGS activity of gold catalysts supported on doped by transition metals ceria. Applied Catalysis B: Environmental, 2013, 136-137, 70-80.	20.2	45

#	Article	IF	CITATIONS
19	Nano-gold catalysts on Fe-modified ceria for pure hydrogen production via WGS and PROX: Effect of preparation method and Fe-doping on the structural and catalytic properties. Applied Catalysis A: General, 2013, 467, 76-90.	4.3	24
20	Comparative Study of Ceria Supported Nano-sized Platinum Catalysts Synthesized by Extractive-Pyrolytic Method for Low-Temperature WGS Reaction. Catalysis Letters, 2013, 143, 942-949.	2.6	11
21	Characterization of metalloanticancer capacity of an agglutinin from wheat. Molecular BioSystems, 2012, 8, 2633.	2.9	7
22	Preferential oxidation of CO in H2 rich stream (PROX) over gold catalysts supported on doped ceria: Effect of water and CO2. Catalysis Today, 2011, 175, 411-419.	4.4	33
23	Gold supported on ceria doped by Me3+ (Me = Al and Sm) for water gas shift reaction: Influence of dopant and preparation method. Catalysis Today, 2010, 158, 69-77.	4.4	20
24	Preferential oxidation of CO in H2 rich stream (PROX) over gold catalysts supported on doped ceria: Effect of preparation method and nature of dopant. Catalysis Today, 2010, 158, 44-55.	4.4	39
25	A comparative study of differently prepared rare earths-modified ceria-supported gold catalysts for preferential oxidation of CO. International Journal of Hydrogen Energy, 2009, 34, 6505-6515.	7.1	54
26	Gold catalysts supported on ceria doped by rare earth metals for water gas shift reaction: Influence of the preparation method. Applied Catalysis A: General, 2009, 357, 159-169.	4.3	65
27	NO reduction by CO over gold based on ceria, doped by rare earth metals. Catalysis Today, 2008, 139, 168-173.	4.4	39
28	Nano-Structured Gold Catalysts Supported on CeO2 and CeO2-Al2O3 for NOx Reduction by CO: Effect of Catalyst Pretreatment and Feed Composition. Journal of Nanoscience and Nanotechnology, 2008, 8, 867-873.	0.9	15
29	Nanosized gold catalysts supported on ceria and ceria-alumina for WGS reaction: Influence of the preparation method. Applied Catalysis A: General, 2007, 333, 153-160.	4.3	41
30	NO reduction by CO in the presence of water over gold supported catalysts on CeO2-Al2O3 mixed support, prepared by mechanochemical activation. Applied Catalysis B: Environmental, 2007, 76, 107-114.	20.2	73
31	Gold based catalysts on ceria and ceria-alumina for WGS reaction (WGS Gold catalysts). Topics in Catalysis, 2007, 44, 173-182.	2.8	48
32	Gold catalysts supported on ceria and ceria–alumina for water-gas shift reaction. Applied Catalysis A: General, 2006, 302, 127-132.	4.3	75
33	Gold catalysts supported on CeO2 and CeO2–Al2O3 for NOx reduction by CO. Applied Catalysis B: Environmental, 2006, 65, 101-109.	20.2	112