
Enes Makalic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8625366/publications.pdf Version: 2024-02-01

ENES MARALIC

#	Article	IF	CITATIONS
1	Demographic and lifestyle risk factors for gastroesophageal reflux disease and Barrett's esophagus in Australia. Ecological Management and Restoration, 2022, 35, .	0.4	9
2	Does genetic predisposition modify the effect of lifestyle-related factors on DNA methylation?. Epigenetics, 2022, 17, 1838-1847.	2.7	2
3	Novel mammogramâ€based measures improve breast cancer risk prediction beyond an established mammographic density measure. International Journal of Cancer, 2021, 148, 2193-2202.	5.1	18
4	Alcohol consumption is associated with widespread changes in blood DNA methylation: Analysis of crossâ€sectional and longitudinal data. Addiction Biology, 2021, 26, e12855.	2.6	49
5	Assessment of a Polygenic Risk Score for Colorectal Cancer to Predict Risk of Lynch Syndrome Colorectal Cancer. JNCI Cancer Spectrum, 2021, 5, pkab022.	2.9	15
6	Epigenetic Drift Association with Cancer Risk and Survival, and Modification by Sex. Cancers, 2021, 13, 1881.	3.7	9
7	Characterization of brainâ€derived extracellular vesicle lipids in Alzheimer's disease. Journal of Extracellular Vesicles, 2021, 10, e12089.	12.2	64
8	Smoking Methylation Marks for Prediction of Urothelial Cancer Risk. Cancer Epidemiology Biomarkers and Prevention, 2021, 30, 2197-2206.	2.5	4
9	Diet and risk of gastro-oesophageal reflux disease in the Melbourne Collaborative Cohort Study. Public Health Nutrition, 2021, 24, 5034-5046.	2.2	8
10	Biological Aging Measures Based on Blood DNA Methylation and Risk of Cancer: A Prospective Study. JNCI Cancer Spectrum, 2021, 5, pkaa109.	2.9	40
11	Minimum Message Length Inference of the Exponential Distribution with Type I Censoring. Entropy, 2021, 23, 1439.	2.2	1
12	Association of FOXO3 Blood DNA Methylation with Cancer Risk, Cancer Survival, and Mortality. Cells, 2021, 10, 3384.	4.1	6
13	Smoking and blood DNA methylation: an epigenome-wide association study and assessment of reversibility. Epigenetics, 2020, 15, 358-368.	2.7	56
14	Fine-mapping of 150 breast cancer risk regions identifies 191 likely target genes. Nature Genetics, 2020, 52, 56-73.	21.4	120
15	Overall lack of replication of associations between dietary intake of folate and vitamin B-12 and DNA methylation in peripheral blood. American Journal of Clinical Nutrition, 2020, 111, 228-230.	4.7	6
16	Stochastic Epigenetic Mutations Are Associated with Risk of Breast Cancer, Lung Cancer, and Mature B-cell Neoplasms. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 2026-2037.	2.5	18
17	An efficient algorithm for sampling from sink (x) for generating random correlation matrices. Communications in Statistics Part B: Simulation and Computation, 2020, , 1-5.	1.2	3
18	Going Beyond Conventional Mammographic Density to Discover Novel Mammogram-Based Predictors of Breast Cancer Risk. Journal of Clinical Medicine, 2020, 9, 627.	2.4	23

ENES MAKALIC

#	Article	IF	CITATIONS
19	Transcriptomeâ€wide association study of breast cancer risk by estrogenâ€receptor status. Genetic Epidemiology, 2020, 44, 442-468.	1.3	32
20	Ability of known susceptibility SNPs to predict colorectal cancer risk for persons with and without a family history. Familial Cancer, 2019, 18, 389-397.	1.9	23
21	Genome-wide association and transcriptome studies identify target genes and risk loci for breast cancer. Nature Communications, 2019, 10, 1741.	12.8	90
22	Genome-wide association study of germline variants and breast cancer-specific mortality. British Journal of Cancer, 2019, 120, 647-657.	6.4	52
23	Physical Activity, Television Viewing Time, and DNA Methylation in Peripheral Blood. Medicine and Science in Sports and Exercise, 2019, 51, 490-498.	0.4	16
24	Polygenic Risk Scores for Prediction of Breast Cancer and Breast Cancer Subtypes. American Journal of Human Genetics, 2019, 104, 21-34.	6.2	711
25	An open-source, integrated pedigree data management and visualization tool for genetic epidemiology. International Journal of Epidemiology, 2018, 47, 1034-1039.	1.9	5
26	Novel associations between blood DNA methylation and body mass index in middle-aged and older adults. International Journal of Obesity, 2018, 42, 887-896.	3.4	52
27	Minimum message length inference of the Poisson and geometric models using heavy-tailed prior distributions. Journal of Mathematical Psychology, 2018, 83, 1-11.	1.8	3
28	Association of DNA Methylation-Based Biological Age With Health Risk Factors and Overall and Cause-Specific Mortality. American Journal of Epidemiology, 2018, 187, 529-538.	3.4	106
29	DNA methylationâ€based biological aging and cancer risk and survival: Pooled analysis of seven prospective studies. International Journal of Cancer, 2018, 142, 1611-1619.	5.1	153
30	Cirrus: An Automated Mammography-Based Measure of Breast Cancer Risk Based on Textural Features. JNCI Cancer Spectrum, 2018, 2, pky057.	2.9	24
31	Genetic susceptibility markers for a breast-colorectal cancer phenotype: Exploratory results from genome-wide association studies. PLoS ONE, 2018, 13, e0196245.	2.5	9
32	Heritable methylation marks associated with breast and prostate cancer risk. Prostate, 2018, 78, 962-969.	2.3	15
33	Dietary intake of one-carbon metabolism nutrients and DNA methylation in peripheral blood. American Journal of Clinical Nutrition, 2018, 108, 611-621.	4.7	35
34	Genomeâ€Wide Measures of Peripheral Blood Dna Methylation and Prostate Cancer Risk in a Prospective Nested Case ontrol Study. Prostate, 2017, 77, 471-478.	2.3	31
35	Association analysis identifies 65 new breast cancer risk loci. Nature, 2017, 551, 92-94.	27.8	1,099
36	Identification of ten variants associated with risk of estrogen-receptor-negative breast cancer. Nature Genetics, 2017, 49, 1767-1778.	21.4	289

ENES MAKALIC

#	Article	IF	CITATIONS
37	Strategies for Integrated Analysis of Genetic, Epigenetic, and Gene Expression Variation in Cancer: Addressing the Challenges. Frontiers in Genetics, 2016, 7, 2.	2.3	23
38	Cross-Cancer Genome-Wide Analysis of Lung, Ovary, Breast, Prostate, and Colorectal Cancer Reveals Novel Pleiotropic Associations. Cancer Research, 2016, 76, 5103-5114.	0.9	100
39	Genome-wide measures of DNA methylation in peripheral blood and the risk of urothelial cell carcinoma: a prospective nested case–control study. British Journal of Cancer, 2016, 115, 664-673.	6.4	38
40	Use of a Novel Nonparametric Version of DEPTH to Identify Genomic Regions Associated with Prostate Cancer Risk. Cancer Epidemiology Biomarkers and Prevention, 2016, 25, 1619-1624.	2.5	7
41	Identification of four novel susceptibility loci for oestrogen receptor negative breast cancer. Nature Communications, 2016, 7, 11375.	12.8	93
42	Genome-wide analysis identifies 12 loci influencing human reproductive behavior. Nature Genetics, 2016, 48, 1462-1472.	21.4	284
43	A Simple Sampler for the Horseshoe Estimator. IEEE Signal Processing Letters, 2016, 23, 179-182.	3.6	124
44	Minimum message length analysis of multiple short time series. Statistics and Probability Letters, 2016, 110, 318-328.	0.7	3
45	Quantifying the utility of single nucleotide polymorphisms to guide colorectal cancer screening. Future Oncology, 2016, 12, 503-513.	2.4	42
46	Childhood body mass index and adult mammographic density measures that predict breast cancer risk. Breast Cancer Research and Treatment, 2016, 156, 163-170.	2.5	19
47	Global measures of peripheral blood-derived DNA methylation as a risk factor in the development of mature B-cell neoplasms. Epigenomics, 2016, 8, 55-66.	2.1	35
48	Aberrant DNA Methylation Patterns in Peripheral Blood Are Detectable Years before the Diagnosis of Mature B Cell Neoplasms. Blood, 2016, 128, 1521-1521.	1.4	0
49	Quantifying the cumulative effect of lowâ€penetrance genetic variants on breast cancer risk. Molecular Genetics & Genomic Medicine, 2015, 3, 182-188.	1.2	1
50	High performance computing enabling exhaustive analysis of higher order single nucleotide polymorphism interaction in Genome Wide Association Studies. Health Information Science and Systems, 2015, 3, S3.	5.2	24
51	Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer. Nature Genetics, 2015, 47, 373-380.	21.4	513
52	Identification and characterization of novel associations in the CASP8/ALS2CR12 region on chromosome 2 with breast cancer risk. Human Molecular Genetics, 2015, 24, 285-298.	2.9	38
53	MicroRNA Related Polymorphisms and Breast Cancer Risk. PLoS ONE, 2014, 9, e109973.	2.5	49
54	Common non-synonymous SNPs associated with breast cancer susceptibility: findings from the Breast Cancer Association Consortium. Human Molecular Genetics, 2014, 23, 6096-6111.	2.9	53

ENES MAKALIC

#	Article	IF	CITATIONS
55	A Genome-wide Association Study of Early-Onset Breast Cancer Identifies <i>PFKM</i> as a Novel Breast Cancer Gene and Supports a Common Genetic Spectrum for Breast Cancer at Any Age. Cancer Epidemiology Biomarkers and Prevention, 2014, 23, 658-669.	2.5	77
56	Identification of New Genetic Susceptibility Loci for Breast Cancer Through Consideration of Geneâ€Environment Interactions. Genetic Epidemiology, 2014, 38, 84-93.	1.3	28
57	FGF receptor genes and breast cancer susceptibility: results from the Breast Cancer Association Consortium. British Journal of Cancer, 2014, 110, 1088-1100.	6.4	21
58	Estimation of stationary autoregressive models with the Bayesian LASSO. Journal of Time Series Analysis, 2013, 34, 517-531.	1.2	8
59	Genome-wide association studies identify four ER negative–specific breast cancer risk loci. Nature Genetics, 2013, 45, 392-398.	21.4	374
60	Large-scale genotyping identifies 41 new loci associated with breast cancer risk. Nature Genetics, 2013, 45, 353-361.	21.4	960
61	Evidence of Gene–Environment Interactions between Common Breast Cancer Susceptibility Loci and Established Environmental Risk Factors. PLoS Genetics, 2013, 9, e1003284.	3.5	136
62	Explaining Variance in the <i>Cumulus</i> Mammographic Measures That Predict Breast Cancer Risk: A Twins and Sisters Study. Cancer Epidemiology Biomarkers and Prevention, 2013, 22, 2395-2403.	2.5	36
63	Supercomputing enabling exhaustive statistical analysis of genome wide association study data: Preliminary results. , 2012, 2012, 1258-61.		5
64	The Consistency of MDL for Linear Regression Models With Increasing Signal-to-Noise Ratio. IEEE Transactions on Signal Processing, 2012, 60, 1508-1510.	5.3	26
65	Genome-wide association analysis identifies three new breast cancer susceptibility loci. Nature Genetics, 2012, 44, 312-318.	21.4	256
66	A meta-analysis of genome-wide association studies of breast cancer identifies two novel susceptibility loci at 6q14 and 20q11. Human Molecular Genetics, 2012, 21, 5373-5384.	2.9	168
67	Estimating the Order of an Autoregressive Model Using Normalized Maximum Likelihood. IEEE Transactions on Signal Processing, 2011, 59, 479-487.	5.3	13
68	FAN1 variants identified in multiple-case early-onset breast cancer families via exome sequencing: no evidence for association with risk for breast cancer. Breast Cancer Research and Treatment, 2011, 130, 1043-1049.	2.5	16
69	Melanoma risk for CDKN2A mutation carriers who are relatives of population-based case carriers in Australia and the UK. Journal of Medical Genetics, 2011, 48, 266-272.	3.2	41
70	Fast Computation of the Kullback–Leibler Divergence and Exact Fisher Information for the First-Order Moving Average Model. IEEE Signal Processing Letters, 2010, 17, 391-393.	3.6	9
71	Universal Models for the Exponential Distribution. IEEE Transactions on Information Theory, 2009, 55, 3087-3090.	2.4	20
72	Minimum Message Length shrinkage estimation. Statistics and Probability Letters, 2009, 79, 1155-1161.	0.7	9