
Chang Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8625027/publications.pdf Version: 2024-02-01

СилысТи

#	Article	IF	CITATIONS
1	Temperature-dependent selective nucleation of single-walled carbon nanotubes from stabilized catalyst nanoparticles. Chemical Engineering Journal, 2022, 431, 133487.	6.6	13
2	Kinetics-Controlled Growth of Metallic Single-Wall Carbon Nanotubes from CoRe _{<i>x</i>} Nanoparticles. ACS Nano, 2022, 16, 232-240.	7.3	13
3	Ultrahigh thermal stability of carbon encapsulated Cu nanograin on a carbon nanotube scaffold. Carbon, 2021, 172, 712-719.	5.4	7
4	High-throughput screening and machine learning for the efficient growth of high-quality single-wall carbon nanotubes. Nano Research, 2021, 14, 4610-4615.	5.8	11
5	Highly Dispersive Cerium Atoms on Carbon Nanowires as Oxygen Reduction Reaction Electrocatalysts for Zn–Air Batteries. Nano Letters, 2021, 21, 4508-4515.	4.5	89
6	Fluorination-assisted preparation of self-supporting single-atom Fe-N-doped single-wall carbon nanotube film as bifunctional oxygen electrode for rechargeable Zn-Air batteries. Applied Catalysis B: Environmental, 2021, 294, 120239.	10.8	70
7	Ionothermal-Transformation Strategy to Synthesize Hierarchically Tubular Porous Single-Iron-Atom Catalysts for High-Performance Zinc–Air Batteries. ACS Applied Materials & Interfaces, 2021, 13, 58576-58584.	4.0	12
8	Aerosol Jet Printing of Graphene and Carbon Nanotube Patterns on Realistically Rugged Substrates. ACS Omega, 2021, 6, 34301-34313.	1.6	11
9	Semiconductor nanochannels in metallic carbon nanotubes by thermomechanical chirality alteration. Science, 2021, 374, 1616-1620.	6.0	32
10	Carbon fiber-promoted activation of catalyst for efficient growth of single-walled carbon nanotubes. Carbon, 2020, 156, 410-415.	5.4	12
11	A Platelet Graphitic Nanofiber arbon Nanotube Hybrid for Efficient Oxygen Evolution Reaction. ChemCatChem, 2020, 12, 360-365.	1.8	25
12	High-efficiency and stable silicon heterojunction solar cells with lightly fluorinated single-wall carbon nanotube films. Nano Energy, 2020, 69, 104442.	8.2	28
13	Precise Identification of the Active Phase of Cobalt Catalyst for Carbon Nanotube Growth by <i>In Situ</i> Transmission Electron Microscopy. ACS Nano, 2020, 14, 16823-16831.	7.3	51
14	Decoupling phonon and carrier scattering at carbon nanotube/Bi2Te3 interfaces for improved thermoelectric performance. Carbon, 2020, 170, 191-198.	5.4	33
15	A Flexible and Infrared-Transparent Bi ₂ Te ₃ -Carbon Nanotube Thermoelectric Hybrid for both Active and Passive Cooling. ACS Applied Electronic Materials, 2020, 2, 3008-3016.	2.0	15
16	MXene-Carbon Nanotube Hybrid Membrane for Robust Recovery of Au from Trace-Level Solution. ACS Applied Materials & Interfaces, 2020, 12, 43032-43041.	4.0	53
17	The importance of H2 in the controlled growth of semiconducting single-wall carbon nanotubes. Journal of Materials Science and Technology, 2020, 54, 105-111.	5.6	9
18	A flexible thermoelectric device based on a Bi2Te3-carbon nanotube hybrid. Journal of Materials Science and Technology, 2020, 58, 80-85.	5.6	31

CHANG LIU

#	Article	IF	CITATIONS
19	Monolayer carbon-encapsulated Mo-doped Ni nanoparticles anchored on single-wall carbon nanotube film for total water splitting. Applied Catalysis B: Environmental, 2020, 269, 118823.	10.8	46
20	Controlled Oneâ€pot Synthesis of Nickel Single Atoms Embedded in Carbon Nanotube and Graphene Supports with High Loading. ChemNanoMat, 2020, 6, 1063-1074.	1.5	14
21	Oriented outperforms disorder: Thickness-independent mass transport for lithium-sulfur batteries. Carbon, 2019, 154, 90-97.	5.4	12
22	Carbon nanotube-linked hollow carbon nanospheres doped with iron and nitrogen as single-atom catalysts for the oxygen reduction reaction in acidic solutions. Journal of Materials Chemistry A, 2019, 7, 14478-14482.	5.2	56
23	Carbon nanotube/silicon heterojunctions for photovoltaic applications. Nano Materials Science, 2019, 1, 156-172.	3.9	43
24	Secondary-Atom-Assisted Synthesis of Single Iron Atoms Anchored on N-Doped Carbon Nanowires for Oxygen Reduction Reaction. ACS Catalysis, 2019, 9, 5929-5934.	5.5	149
25	Transparent and flexible hydrogen sensor based on semiconducting single-wall carbon nanotube networks. Carbon, 2019, 151, 156-159.	5.4	19
26	A Freestanding Singleâ€Wall Carbon Nanotube Film Decorated with Nâ€Đoped Carbonâ€Encapsulated Ni Nanoparticles as a Bifunctional Electrocatalyst for Overall Water Splitting. Advanced Science, 2019, 6, 1802177.	5.6	56
27	Iron silicide-catalyzed growth of single-walled carbon nanotubes with a narrow diameter distribution. Carbon, 2019, 149, 139-143.	5.4	17
28	Identification of active sites in nitrogen and sulfur co-doped carbon-based oxygen reduction catalysts. Carbon, 2019, 147, 303-311.	5.4	44
29	Vertically aligned carbon nanotube arrays as a thermal interface material. APL Materials, 2019, 7, .	2.2	43
30	Preparation of metallic single-wall carbon nanotubes. Carbon, 2019, 147, 187-198.	5.4	22
31	Flexible layer-structured Bi2Te3 thermoelectric on a carbon nanotube scaffold. Nature Materials, 2019, 18, 62-68.	13.3	316
32	Unsaturated edge-anchored Ni single atoms on porous microwave exfoliated graphene oxide for electrochemical CO2. Applied Catalysis B: Environmental, 2019, 243, 294-303.	10.8	243
33	Electrochemically substituted metal phthalocyanines, e-MPc (M = Co, Ni), as highly active and selective catalysts for CO ₂ reduction. Journal of Materials Chemistry A, 2018, 6, 1370-1375.	5.2	43
34	Selective growth of semiconducting single-wall carbon nanotubes using SiC as a catalyst. Carbon, 2018, 135, 195-201.	5.4	11
35	Ultrahigh-performance transparent conductive films of carbon-welded isolated single-wall carbon nanotubes. Science Advances, 2018, 4, eaap9264.	4.7	178
36	Clean, fast and scalable transfer of ultrathin/patterned vertically-aligned carbon nanotube arrays. Carbon, 2018, 133, 275-282.	5.4	21

CHANG LIU

#	Article	IF	CITATIONS
37	A MnO2 nanosheet/single-wall carbon nanotube hybrid fiber for wearable solid-state supercapacitors. Carbon, 2018, 140, 634-643.	5.4	48
38	The effect of carbon support on the oxygen reduction activity and durability of single-atom iron catalysts. MRS Communications, 2018, 8, 1158-1166.	0.8	27
39	Small-bundle single-wall carbon nanotubes for high-efficiency silicon heterojunction solar cells. Nano Energy, 2018, 50, 521-527.	8.2	43
40	Carbon nanotube encapsulated in nitrogen and phosphorus co-doped carbon as a bifunctional electrocatalyst for oxygen reduction and evolution reactions. Carbon, 2018, 139, 156-163.	5.4	97
41	Surface-restrained growth of vertically aligned carbon nanotube arrays with excellent thermal transport performance. Nanoscale, 2017, 9, 8213-8219.	2.8	17
42	Single-wall carbon nanotube network enabled ultrahigh sulfur-content electrodes for high-performance lithium-sulfur batteries. Nano Energy, 2017, 42, 205-214.	8.2	183
43	Heteroatomâ€Doped Carbon Nanotube and Grapheneâ€Based Electrocatalysts for Oxygen Reduction Reaction. Small, 2017, 13, 1702002.	5.2	202
44	Applications of carbon nanotubes and graphene produced by chemical vapor deposition. MRS Bulletin, 2017, 42, 825-833.	1.7	14
45	Carbon-encapsulated NiO nanoparticle decorated single-walled carbon nanotube thin films for binderless flexible electrodes of supercapacitors. Journal of Materials Chemistry A, 2017, 5, 24813-24819.	5.2	25
46	Hierarchically porous Fe-N-doped carbon nanotubes as efficient electrocatalyst for oxygen reduction. Carbon, 2016, 109, 632-639.	5.4	74
47	A flexible cotton-derived carbon sponge for high-performance capacitive deionization. Carbon, 2016, 101, 1-8.	5.4	100
48	Synthesis of high quality nitrogen-doped single-wall carbon nanotubes. Science China Materials, 2015, 58, 603-610.	3.5	9
49	A nitrogen-doped mesoporous carbon containing an embedded network of carbon nanotubes as a highly efficient catalyst for the oxygen reduction reaction. Nanoscale, 2015, 7, 19201-19206.	2.8	55
50	De-bundling of single-wall carbon nanotubes induced by an electric field during arc discharge synthesis. Carbon, 2014, 74, 370-373.	5.4	13
51	Growth of metal-catalyst-free nitrogen-doped metallic single-wall carbon nanotubes. Nanoscale, 2014, 6, 12065-12070.	2.8	21
52	Growth of double-walled carbon nanotubes from silicon oxide nanoparticles. Carbon, 2013, 56, 167-172.	5.4	18
53	Growth of tadpole-like carbon nanotubes from TiO2 nanoparticles. Carbon, 2013, 55, 253-259.	5.4	7
54	Carbon nanotubes prepared by anodic aluminum oxide template method. Science Bulletin, 2012, 57, 187-204.	1.7	35

Chang Liu

#	Article	IF	CITATIONS
55	Vertically Aligned Carbon Nanotubes Grown on Graphene Paper as Electrodes in Lithiumâ€lon Batteries and Dyeâ€Sensitized Solar Cells. Advanced Energy Materials, 2011, 1, 486-490.	10.2	309
56	Selective removal of metallic single-walled carbon nanotubes by combined in situ and post-synthesis oxidation. Carbon, 2010, 48, 2941-2947.	5.4	50
57	Controlled synthesis of quasi-one-dimensional boron nitride nanostructures. Journal of Materials Research, 2007, 22, 2809-2816.	1.2	17
58	Observations of novel carbon nanotubes with multiple hollow cores. Carbon, 2003, 41, 2477-2480.	5.4	8
59	FeCl3-functionalized graphene oxide/single-wall carbon nanotube/silicon heterojunction solar cells with an efficiency of 17.5%. Journal of Materials Chemistry A, 0, , .	5.2	9