
Daniel C Reed

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8624783/publications.pdf Version: 2024-02-01

DANIEL C REED

#	Article	IF	CITATIONS
1	Global patterns of kelp forest change over the past half-century. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13785-13790.	7.1	511
2	The Effects of Canopy Shadings on Algal Recruitment and Growth in a Giant Kelp Forest. Ecology, 1984, 65, 937-948.	3.2	363
3	Variation in Algal Dispersal and Recruitment: The Importance of Episodic Events. Ecological Monographs, 1988, 58, 321-335.	5.4	272
4	The Effects of Variable Settlement and Early Competition on Patterns of Kelp Recruitment. Ecology, 1990, 71, 776-787.	3.2	191
5	Climate-driven increases in storm frequency simplify kelp forest food webs. Global Change Biology, 2011, 17, 2513-2524.	9.5	172
6	A PHYSICALLY BASED MODEL OF MACROALGAL SPORE DISPERSAL IN THE WAVE AND CURRENT-DOMINATED NEARSHORE. Ecology, 2002, 83, 1239-1251.	3.2	159
7	BIOMASS RATHER THAN GROWTH RATE DETERMINES VARIATION IN NET PRIMARY PRODUCTION BY GIANT KELP. Ecology, 2008, 89, 2493-2505.	3.2	150
8	Spatial patterns of flow and their modification within and around a giant kelp forest. Limnology and Oceanography, 2007, 52, 1838-1852.	3.1	148
9	Wave disturbance overwhelms top-down and bottom-up control of primary production in California kelp forests. Ecology, 2011, 92, 2108-2116.	3.2	147
10	Dispersal in Kelps: Factors Affecting Spore Swimming and Competency. Ecology, 1992, 73, 1577-1585.	3.2	127
11	Spatial Variability in the Resistance and Resilience of Giant Kelp in Southern and Baja California to a Multiyear Heatwave. Frontiers in Marine Science, 2019, 6, .	2.5	119
12	Geographical variability in the controls of giant kelp biomass dynamics. Journal of Biogeography, 2015, 42, 2010-2021.	3.0	107
13	MACROALGAL SPORE DISPERSAL IN COASTAL ENVIRONMENTS: MECHANISTIC INSIGHTS REVEALED BY THEORY AND EXPERIMENT. Ecological Monographs, 2006, 76, 481-502.	5.4	105
14	Giant kelp, <i>Macrocystis pyrifera</i> , increases faunal diversity through physical engineering. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20172571.	2.6	104
15	Isolation by oceanographic distance explains genetic structure for <i>Macrocystis pyrifera</i> in the Santa Barbara Channel. Molecular Ecology, 2011, 20, 2543-2554.	3.9	102
16	Partitioning of primary production among giant kelp (<i>Macrocystis pyrifera</i>), understory macroalgae, and phytoplankton on a temperate reef. Limnology and Oceanography, 2011, 56, 119-132.	3.1	89
17	SPORE SUPPLY AND HABITAT AVAILABILITY AS SOURCES OF RECRUITMENT LIMITATION IN THE GIANT KELP MACROCYSTIS PYRIFERA (PHAEOPHYCEAE)1. Journal of Phycology, 2004, 40, 275-284.	2.3	85
18	Habitat continuity and geographic distance predict population genetic differentiation in giant kelp. Ecology, 2010, 91, 49-56.	3.2	81

DANIEL C REED

#	Article	IF	CITATIONS
19	Differential Reproductive Responses to Fluctuating Resources in Two Seaweeds with Different Reproductive Strategies. Ecology, 1996, 77, 300-316.	3.2	78
20	Physical pathways and utilization of nitrate supply to the giant kelp, Macrocystis pyrifera. Limnology and Oceanography, 2008, 53, 1589-1603.	3.1	78
21	THE ROLE OF DISPERSAL AND DISTURBANCE IN DETERMINING SPATIAL HETEROGENEITY IN SEDENTARY ORGANISMS. Ecology, 2000, 81, 2011-2026.	3.2	76
22	THE ROLE OF REPRODUCTIVE SYNCHRONY IN THE COLONIZATION POTENTIAL OF KELP. Ecology, 1997, 78, 2443-2457.	3.2	73
23	Loss of foundation species: disturbance frequency outweighs severity in structuring kelp forest communities. Ecology, 2018, 99, 2442-2454.	3.2	61
24	Seascape drivers of <i><scp>M</scp>acrocystis pyrifera</i> population genetic structure in the northeast <scp>P</scp> acific. Molecular Ecology, 2015, 24, 4866-4885.	3.9	55
25	Fluctuations in population fecundity drive variation in demographic connectivity and metapopulation dynamics. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20162086.	2.6	55
26	Synchrony in dynamics of giant kelp forests is driven by both local recruitment and regional environmental controls. Ecology, 2013, 94, 499-509.	3.2	54
27	Patterns and controls of reefâ€scale production of dissolved organic carbon by giant kelp <scp><i>M</i></scp> <i>acrocystis pyrifera</i> . Limnology and Oceanography, 2015, 60, 1996-2008.	3.1	54
28	Foundation species promote community stability by increasing diversity in a giant kelp forest. Ecology, 2020, 101, e02987.	3.2	52
29	Connectivity structures local population dynamics: a longâ€ŧerm empirical test in a large metapopulation system. Ecology, 2015, 96, 3141-3152.	3.2	50
30	A Metapopulation Perspective on the Patch Dynamics of Giant Kelp in Southern California. , 2006, , 353-386.		43
31	Species insurance trumps spatial insurance in stabilizing biomass of a marine macroalgal metacommunity. Ecology, 2019, 100, e02719.	3.2	38
32	The importance of progressive senescence in the biomass dynamics of giant kelp (<i>Macrocystis) Tj ETQq0 0 C</i>) rgBT/Ove	erlogg 10 Tf 50
33	Improved estimates of net primary production, growth, and standing crop of <i>Macrocystis pyrifera</i> in Southern California. Ecology, 2018, 99, 2132-2132.	3.2	33
34	Urea as a source of nitrogen to giant kelp (<i>Macrocystis pyrifera</i>). Limnology and Oceanography Letters, 2018, 3, 365-373.	3.9	30
35	Patterns and controls of the dynamics of net primary production by understory macroalgal assemblages in giant kelp forests. Journal of Phycology, 2013, 49, 248-257.	2.3	27
36	Trophic versus structural effects of a marine foundation species, giant kelp (Macrocystis pyrifera). Oecologia, 2015, 179, 1199-1209.	2.0	27

DANIEL C REED

#	Article	IF	CITATIONS
37	Scale-specific drivers of kelp forest communities. Oecologia, 2018, 186, 217-233.	2.0	25
38	Effects of ocean climate on spatiotemporal variation in sea urchin settlement and recruitment. Limnology and Oceanography, 2020, 65, 2076-2091.	3.1	24
39	NET PRIMARY PRODUCTION, GROWTH, AND STANDING CROP OFMACROCYSTIS PYRIFERAIN SOUTHERN CALIFORNIA. Ecology, 2008, 89, 2068-2068.	3.2	22
40	Addition of species abundance and performance predicts community primary production of macroalgae. Oecologia, 2012, 168, 797-806.	2.0	21
41	The Utility of Satellites and Autonomous Remote Sensing Platforms for Monitoring Offshore Aquaculture Farms: A Case Study for Canopy Forming Kelps. Frontiers in Marine Science, 2020, 7, .	2.5	20
42	Regional patterns of physiological condition determine giant kelp net primary production dynamics. Limnology and Oceanography, 2018, 63, 472-483.	3.1	19
43	A Review of the Opportunities and Challenges for Using Remote Sensing for Management of Surface-Canopy Forming Kelps. Frontiers in Marine Science, 2021, 8, .	2.5	19
44	A multiâ€decade time series of kelp forest community structure at San Nicolas Island, California (USA). Ecology, 2013, 94, 2654-2654.	3.2	18
45	Climate and fishing drive regime shifts in consumerâ€mediated nutrient cycling in kelp forests. Global Change Biology, 2019, 25, 3179-3192.	9.5	18
46	Looking into the black box: simulating the role of selfâ€fertilization and mortality in the genetic structure of <i>Macrocystis pyrifera</i> . Molecular Ecology, 2013, 22, 4842-4854.	3.9	17
47	Blade life span, structural investment, and nutrient allocation in giant kelp. Oecologia, 2016, 182, 397-404.	2.0	17
48	Microsatellite markers for the giant kelp Macrocystis pyrifera. Conservation Genetics, 2009, 10, 1915-1917.	1.5	16
49	Effects of depth-cycling on nutrient uptake and biomass production in the giant kelp Macrocystis pyrifera. Renewable and Sustainable Energy Reviews, 2021, 141, 110747.	16.4	16
50	Disturbance structures canopy and understory productivity along an environmental gradient. Ecology Letters, 2021, 24, 2192-2206.	6.4	16
51	Improving the ability of a BACI design to detect impacts within a kelpâ€ f orest community. Ecological Applications, 2021, 31, e02304.	3.8	5
52	Factors influencing urea use by giant kelp (Macrocystis pyrifera , Phaeophyceae). Limnology and Oceanography, 2021, 66, 1190-1200.	3.1	5
53	An evaluation of surge uptake capability in the giant kelp (Macrocystis pyrifera) in response to pulses of three different forms of nitrogen. Marine Biology, 2021, 168, 1.	1.5	4
54	Seascape genetics of the stalked kelp <i>Pterygophora californica</i> and comparative population genetics in the Santa Barbara Channel. Journal of Phycology, 2020, 56, 110-120.	2.3	1