Michael T Mcmanus

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8623737/publications.pdf

Version: 2024-02-01

189 papers 30,074 citations

72 h-index 165 g-index

215 all docs

215 docs citations

215 times ranked

48216 citing authors

#	Article	IF	CITATIONS
1	Integrative analysis of 111 reference human epigenomes. Nature, 2015, 518, 317-330.	27.8	5,653
2	A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nature Genetics, 2003, 33, 401-406.	21.4	1,427
3	Dysregulation of Cardiogenesis, Cardiac Conduction, and Cell Cycle in Mice Lacking miRNA-1-2. Cell, 2007, 129, 303-317.	28.9	1,341
4	Gene silencing in mammals by small interfering RNAs. Nature Reviews Genetics, 2002, 3, 737-747.	16.3	1,303
5	Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition. Nature, 2017, 551, 247-250.	27.8	1,043
6	TAZ, a Transcriptional Modulator of Mesenchymal Stem Cell Differentiation. Science, 2005, 309, 1074-1078.	12.6	891
7	Pervasive Transcription of the Human Genome Produces Thousands of Previously Unidentified Long Intergenic Noncoding RNAs. PLoS Genetics, 2013, 9, e1003569.	3 . 5	655
8	The RNaselll enzyme <i>Dicer</i> is required for morphogenesis but not patterning of the vertebrate limb. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 10898-10903.	7.1	619
9	Cre-lox-regulated conditional RNA interference from transgenes. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 10380-10385.	7.1	575
10	IRE1 $\hat{l}\pm$ Cleaves Select microRNAs During ER Stress to Derepress Translation of Proapoptotic Caspase-2. Science, 2012, 338, 818-822.	12.6	550
11	Dicer1 and miR-219 Are Required for Normal Oligodendrocyte Differentiation and Myelination. Neuron, 2010, 65, 597-611.	8.1	501
12	Selective miRNA disruption in T reg cells leads to uncontrolled autoimmunity. Journal of Experimental Medicine, 2008, 205, 1983-1991.	8.5	482
13	RNA interference of influenza virus production by directly targeting mRNA for degradation and indirectly inhibiting all viral RNA transcription. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 2718-2723.	7.1	480
14	Chd1 regulates open chromatin and pluripotency of embryonic stem cells. Nature, 2009, 460, 863-868.	27.8	449
15	MicroRNA-responsive 'sensor' transgenes uncover Hox-like and other developmentally regulated patterns of vertebrate microRNA expression. Nature Genetics, 2004, 36, 1079-1083.	21.4	411
16	Conditional Loss of Dicer Disrupts Cellular and Tissue Morphogenesis in the Cortex and Hippocampus. Journal of Neuroscience, 2008, 28, 4322-4330.	3.6	411
17	Dicerfunction is essential for lung epithelium morphogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 2208-2213.	7.1	382
18	Choosing the Right Tool for the Job: RNAi, TALEN, or CRISPR. Molecular Cell, 2015, 58, 575-585.	9.7	374

#	Article	IF	Citations
19	MicroRNAs and cancer. Seminars in Cancer Biology, 2003, 13, 253-258.	9.6	368
20	The microRNA miR-196 acts upstream of Hoxb8 and Shh in limb development. Nature, 2005, 438, 671-674.	27.8	365
21	MicroRNA Expression Is Required for Pancreatic Islet Cell Genesis in the Mouse. Diabetes, 2007, 56, 2938-2945.	0.6	344
22	A Systematic Mammalian Genetic Interaction Map Reveals Pathways Underlying Ricin Susceptibility. Cell, 2013, 152, 909-922.	28.9	332
23	BCAA catabolism in brown fat controls energy homeostasis through SLC25A44. Nature, 2019, 572, 614-619.	27.8	332
24	Podocyte-Specific Deletion of Dicer Alters Cytoskeletal Dynamics and Causes Glomerular Disease. Journal of the American Society of Nephrology: JASN, 2008, 19, 2150-2158.	6.1	300
25	Essential role for Dicer during skeletal muscle development. Developmental Biology, 2007, 311, 359-368.	2.0	298
26	CP110, a Cell Cycle-Dependent CDK Substrate, Regulates Centrosome Duplication in Human Cells. Developmental Cell, 2002, 3, 339-350.	7.0	290
27	Gene silencing using micro-RNA designed hairpins. Rna, 2002, 8, 842-850.	3.5	280
28	Unexplored therapeutic opportunities in the human genome. Nature Reviews Drug Discovery, 2018, 17, 317-332.	46.4	263
29	Members of the miRNA-200 Family Regulate Olfactory Neurogenesis. Neuron, 2008, 57, 41-55.	8.1	245
30	A systematic comparison reveals substantial differences in chromosomal versus episomal encoding of enhancer activity. Genome Research, 2017, 27, 38-52.	5 . 5	244
31	Negative regulation of Hif1a expression and TH17 differentiation by the hypoxia-regulated microRNA miR-210. Nature Immunology, 2014, 15, 393-401.	14.5	219
32	Small Interfering RNA-Mediated Gene Silencing in T Lymphocytes. Journal of Immunology, 2002, 169, 5754-5760.	0.8	217
33	Dicer loss in striatal neurons produces behavioral and neuroanatomical phenotypes in the absence of neurodegeneration. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 5614-5619.	7.1	205
34	<i>Dicer</i> Inactivation Leads to Progressive Functional and Structural Degeneration of the Mouse Retina. Journal of Neuroscience, 2008, 28, 4878-4887.	3.6	204
35	Dicer1 Is Required for Differentiation of the Mouse Male Germline1. Biology of Reproduction, 2008, 79, 696-703.	2.7	203
36	Effects of age and gender on in vitro properties of human liver microsomal monooxygenases. Clinical Pharmacology and Therapeutics, 1990, 48, 365-374.	4.7	200

#	Article	IF	CITATIONS
37	<i>Dicer</i> ablation in oligodendrocytes provokes neuronal impairment in mice. Annals of Neurology, 2009, 66, 843-857.	5.3	191
38	LPS induces KHâ€type splicing regulatory proteinâ€dependent processing of microRNAâ€155 precursors in macrophages. FASEB Journal, 2009, 23, 2898-2908.	0.5	188
39	Analysis of microRNA knockouts in mice. Human Molecular Genetics, 2010, 19, R169-R175.	2.9	186
40	T cell activation induces proteasomal degradation of Argonaute and rapid remodeling of the microRNA repertoire. Journal of Experimental Medicine, 2013, 210, 417-432.	8.5	180
41	Up-regulation of miR-21 by HER2/neu Signaling Promotes Cell Invasion. Journal of Biological Chemistry, 2009, 284, 18515-18524.	3.4	176
42	Sertoli cell Dicer is essential for spermatogenesis in mice. Developmental Biology, 2009, 326, 250-259.	2.0	171
43	Disruption of Dicer1 Induces Dysregulated Fetal Gene Expression and Promotes Hepatocarcinogenesis. Gastroenterology, 2009, 136, 2304-2315.e4.	1.3	167
44	A Resource for the Conditional Ablation of microRNAs in the Mouse. Cell Reports, 2012, 1, 385-391.	6.4	163
45	Extracellular Sulfatases, Elements of the Wnt Signaling Pathway, Positively Regulate Growth and Tumorigenicity of Human Pancreatic Cancer Cells. PLoS ONE, 2007, 2, e392.	2.5	162
46	MicroRNAs and endocrine biology. Journal of Endocrinology, 2005, 187, 327-332.	2.6	159
47	CD81 Controls Beige Fat Progenitor Cell Growth and Energy Balance via FAK Signaling. Cell, 2020, 182, 563-577.e20.	28.9	156
48	The Extracellular RNA Communication Consortium: Establishing Foundational Knowledge and Technologies for Extracellular RNA Research. Cell, 2019, 177, 231-242.	28.9	152
49	Cell Separation Processes in Plants—Models, Mechanisms and Manipulation. Annals of Botany, 2000, 86, 223-235.	2.9	151
50	PIM1 kinase inhibition as a targeted therapy against triple-negative breast tumors with elevated MYC expression. Nature Medicine, 2016, 22, 1321-1329.	30.7	138
51	An expanded universe of cancer targets. Cell, 2021, 184, 1142-1155.	28.9	135
52	Residual microRNA expression dictates the extent of inner ear development in conditional Dicer knockout mice. Developmental Biology, 2009, 328, 328-341.	2.0	131
53	Accumulation of a chymotrypsin inhibitor in transgenic tobacco can affect the growth of insect pests. Transgenic Research, 1994, 3, 50-58.	2.4	130
54	Macrophage Exosomes Resolve Atherosclerosis by Regulating Hematopoiesis and Inflammation via MicroRNA Cargo. Cell Reports, 2020, 32, 107881.	6.4	130

#	Article	IF	CITATIONS
55	Dual gene activation and knockout screen reveals directional dependencies in genetic networks. Nature Biotechnology, 2018, 36, 170-178.	17. 5	120
56	MicroRNAs 24 and 27 Suppress Allergic Inflammation and Target a Network of Regulators of T Helper 2 Cell-Associated Cytokine Production. Immunity, 2016, 44, 821-832.	14.3	119
57	Expanded RNA-binding activities of mammalian Argonaute 2. Nucleic Acids Research, 2009, 37, 7533-7545.	14.5	113
58	A high-coverage shRNA screen identifies TMEM129 as an E3 ligase involved in ER-associated protein degradation. Nature Communications, 2014, 5, 3832.	12.8	113
59	Ethylene and carbon dioxide production by developing strawberries show a correlative pattern that is indicative of ripening climacteric fruit. Physiologia Plantarum, 2006, 127, 247-259.	5.2	105
60	Identification of candidate mitochondrial RNA editing ligases from Trypanosoma brucei. Rna, 2001, 7, 167-175.	3.5	103
61	Research Resource: RNA-Seq Reveals Unique Features of the Pancreatic Î ² -Cell Transcriptome. Molecular Endocrinology, 2012, 26, 1783-1792.	3.7	95
62	Dicer is required for proper liver zonation. Journal of Pathology, 2009, 219, 365-372.	4.5	94
63	Massively parallel functional annotation of 3′ untranslated regions. Nature Biotechnology, 2014, 32, 387-391.	17.5	93
64	Effects of the soybean (Kunitz) trypsin inhibitor on growth and digestive proteases of larvae of Spodoptera litura. Journal of Insect Physiology, 1995, 41, 731-738.	2.0	92
65	Rapid creation and quantitative monitoring of high coverage shRNA libraries. Nature Methods, 2009, 6, 443-445.	19.0	92
66	The Pitx2:miR-200c/141:noggin pathway regulates Bmp signaling and ameloblast differentiation. Development (Cambridge), 2013, 140, 3348-3359.	2.5	88
67	Genome-wide CRISPR screen identifies FAM49B as a key regulator of actin dynamics and T cell activation. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E4051-E4060.	7.1	88
68	Mouse let-7 miRNA populations exhibit RNA editing that is constrained in the 5'-seed/ cleavage/anchor regions and stabilize predicted mmu-let-7a:mRNA duplexes. Genome Research, 2008, 18, 1571-1581.	5.5	87
69	Systematic Identification of Barriers to Human iPSC Generation. Cell, 2014, 158, 449-461.	28.9	86
70	Identification of a monoclonal antibody to abscission tissue that recognises xylose/fucose-containing N-linked oligosaccharides from higher plants. Planta, 1988, 175, 506-512.	3.2	85
71	Genetic analyses reveal a requirement for Dicer1 in the mouse urogenital tract. Mammalian Genome, 2009, 20, 140-151.	2.2	82
72	Biogenesis, delivery, and function of extracellular RNA. Journal of Extracellular Vesicles, 2015, 4, 27494.	12.2	80

#	Article	IF	Citations
73	The Transcriptionally Permissive Chromatin State of Embryonic Stem Cells Is Acutely Tuned to Translational Output. Cell Stem Cell, 2018, 22, 369-383.e8.	11.1	75
74	Genetic Models Reveal cis and trans Immune-Regulatory Activities for lincRNA-Cox2. Cell Reports, 2018, 25, 1511-1524.e6.	6.4	73
75	Changes in photosynthetic efficiency and carotenoid composition in leaves of white clover at different developmental stages. Plant Physiology and Biochemistry, 2003, 41, 887-893.	5.8	72
76	Next-Generation NAMPT Inhibitors Identified by Sequential High-Throughput Phenotypic Chemical and Functional Genomic Screens. Chemistry and Biology, 2013, 20, 1352-1363.	6.0	72
77	Expression of 1-Aminocyclopropane-1-Carboxylate Oxidase during Leaf Ontogeny in White Clover1. Plant Physiology, 1999, 120, 131-142.	4.8	70
78	Genomic Resolution of DLX-Orchestrated Transcriptional Circuits Driving Development of Forebrain GABAergic Neurons. Cell Reports, 2019, 28, 2048-2063.e8.	6.4	68
79	A Novel Alliinase from Onion Roots. Biochemical Characterization and cDNA Cloning. Plant Physiology, 2000, 122, 1269-1280.	4.8	65
80	miR-15/16 Restrain Memory T Cell Differentiation, Cell Cycle, and Survival. Cell Reports, 2019, 28, 2169-2181.e4.	6.4	65
81	The proteomics of senescence in leaves of white clover, Trifolium repens (L.). Proteomics, 2002, 2, 1114-1122.	2.2	63
82	Human CD45 is an F-component-specific receptor for the staphylococcal toxin Panton–Valentine leukocidin. Nature Microbiology, 2018, 3, 708-717.	13.3	63
83	CRISPR/Cas-based screening of long non-coding RNAs (IncRNAs) in macrophages with an NF-κB reporter. Journal of Biological Chemistry, 2017, 292, 20911-20920.	3.4	60
84	Posttranscriptional Silencing of Effector Cytokine mRNA Underlies the Anergic Phenotype of Self-Reactive T Cells. Immunity, 2011, 34, 50-60.	14.3	56
85	Precursor MicroRNA-Programmed Silencing Complex Assembly Pathways in Mammals. Molecular Cell, 2012, 46, 507-517.	9.7	56
86	Epigenetic and transcriptional determinants of the human breast. Nature Communications, 2015, 6, 6351.	12.8	56
87	Dual Strategies for Argonaute2-Mediated Biogenesis of Erythroid miRNAs Underlie Conserved Requirements for Slicing in Mammals. Molecular Cell, 2018, 69, 265-278.e6.	9.7	56
88	A screen in mice uncovers repression of lipoprotein lipase by microRNAâ€29a as a mechanism for lipid distribution away from the liver. Hepatology, 2015, 61, 141-152.	7.3	54
89	Characterization of the 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase multigene family of Malus domestica Borkh. Phytochemistry, 2009, 70, 348-360.	2.9	52
90	Transdifferentiation of Mature Cortical Cells to Functional Abscission Cells in Bean1. Plant Physiology, 1998, 116, 891-899.	4.8	51

#	Article	IF	CITATIONS
91	Thermoregulation via Temperature-Dependent PGD2 Production in Mouse Preoptic Area. Neuron, 2019, 103, 309-322.e7.	8.1	50
92	An siRNA Screen in Pancreatic Beta Cells Reveals a Role for Gpr27 in Insulin Production. PLoS Genetics, 2012, 8, e1002449.	3 . 5	49
93	Processing of polycistronic guide RNAs is associated with RNA editing complexes in Trypanosoma brucei. EMBO Journal, 2000, 19, 5525-5532.	7.8	48
94	A cysteine proteinase inhibitor purified from apple fruit. Phytochemistry, 1998, 49, 957-963.	2.9	46
95	Biochar in Co-Contaminated Soil Manipulates Arsenic Solubility and Microbiological Community Structure, and Promotes Organochlorine Degradation. PLoS ONE, 2015, 10, e0125393.	2.5	45
96	Title is missing!. Transgenic Research, 1999, 8, 383-395.	2.4	43
97	Pinitol accumulation in mature leaves of white clover in response to a water deficit. Environmental and Experimental Botany, 2000, 43, 11-18.	4.2	43
98	Sulfur and nitrogen fertility affects flavour of field-grown onions. Plant and Soil, 2005, 269, 151-158.	3.7	43
99	Lentivirus Production. Journal of Visualized Experiments, 2009, , .	0.3	42
100	Right- and left-loop short shRNAs have distinct and unusual mechanisms of gene silencing. Nucleic Acids Research, 2012, 40, 9255-9271.	14.5	41
101	Examining the evidence for extracellular RNA function in mammals. Nature Reviews Genetics, 2021, 22, 448-458.	16.3	41
102	Unintentional miRNA Ablation Is a Risk Factor in Gene Knockout Studies: A Short Report. PLoS Genetics, 2008, 4, e34.	3.5	40
103	Observations on the leaf anatomy ofFestuca novaeâ€zelandiaeand biochemical responses to a water deficit. New Zealand Journal of Botany, 1998, 36, 113-123.	1.1	39
104	Trypanosoma brucei Guide RNA Poly(U) Tail Formation Is Stabilized by Cognate mRNA. Molecular and Cellular Biology, 2000, 20, 883-891.	2.3	39
105	Duox2 exhibits potent heme peroxidase activity in human respiratory tract epithelium. FEBS Letters, 2006, 580, 5150-5154.	2.8	37
106	<i>miR-200</i> deficiency promotes lung cancer metastasis by activating Notch signaling in cancer-associated fibroblasts. Genes and Development, 2021, 35, 1109-1122.	5.9	35
107	TARGET CELLS FOR ETHYLENE ACTION. , 1985, , 197-212.		32
108	Defining epithelial cell dynamics and lineage relationships in the developing lacrimal gland. Development (Cambridge), 2017, 144, 2517-2528.	2.5	32

#	Article	IF	CITATIONS
109	Polymerase II Promoter Strength Determines Efficacy of microRNA Adapted shRNAs. PLoS ONE, 2011, 6, e26213.	2.5	31
110	Widespread RNA 3′-end oligouridylation in mammals. Rna, 2012, 18, 394-401.	3. 5	30
111	Comparison of acid phosphatases in two genotypes of white clover with different responses to applied phosphate. Journal of Plant Nutrition, 1999, 22, 679-692.	1.9	29
112	Small RNAs and Immunity. Immunity, 2004, 21, 747-756.	14.3	29
113	Identification and characterisation of two distinct acid phosphatases in cell walls of roots of white clover. Plant Physiology and Biochemistry, 2000, 38, 259-270.	5. 8	27
114	Senescence-associated down-regulation of 1-aminocyclopropane-1-carboxylate (ACC) oxidase delays harvest-induced senescence in broccoli. Functional Plant Biology, 2005, 32, 891.	2.1	27
115	The microRNA-processing enzyme Dicer is dispensable for somite segmentation but essential for limb bud positioning. Developmental Biology, 2011, 351, 254-265.	2.0	27
116	Dicer Regulates Differentiation and Viability during Mouse Pancreatic Cancer Initiation. PLoS ONE, 2014, 9, e95486.	2.5	27
117	High-Throughput CRISPR Screening Identifies Genes Involved in Macrophage Viability and Inflammatory Pathways. Cell Reports, 2020, 33, 108541.	6.4	25
118	Identification of polypeptides specific to rachis abscission zone cells of Sambucus nigra. Physiologia Plantarum, 1990, 79, 471-478.	5. 2	24
119	Evidence for the Preferential Expression of Particular Polypeptides in Leaf Abscission Zones of the Bean Phaseolus vulgaris L Journal of Plant Physiology, 1990, 136, 391-397.	3.5	24
120	Expression of 1-Aminocyclopropane-1-Carboxylate (ACC) Oxidase Genes During the Development of Vegetative Tissues in White Clover (Trifolium repens L.) is Regulated by Ontological Cues. Plant Molecular Biology, 2006, 60, 451-467.	3.9	24
121	Behind the Scenes of a Small RNA Gene-Silencing Pathway. Human Gene Therapy, 2008, 19, 17-26.	2.7	24
122	Transcription of Biotic Stress Associated Genes in White Clover (Trifolium repens L.) Differs in Response to Cyst and Root-Knot Nematode Infection. PLoS ONE, 2015, 10, e0137981.	2.5	24
123	Further Examination of Abscission Zone Cells as Ethylene Target Cells in Higher Plants. Annals of Botany, 2007, 101, 285-292.	2.9	22
124	Let-7b/c Enhance the Stability of a Tissue-Specific mRNA during Mammalian Organogenesis as Part of a Feedback Loop Involving KSRP. PLoS Genetics, 2012, 8, e1002823.	3.5	22
125	Tissue-specific changes in remobilisation of fructan in the xerophytic tussock species Festuca novae-zelandiae in response to a water deficit. Functional Plant Biology, 2004, 31, 377.	2.1	20
126	Complex formation between recombinant ATP sulfurylase and APS reductase of <i>Allium cepa</i> FEBS Letters, 2007, 581, 4139-4147.	2.8	20

#	Article	IF	Citations
127	Slowing Down the Ras Lane: miRNAs as Tumor Suppressors?. Science Signaling, 2005, 2005, pe41-pe41.	3.6	19
128	RNA interference in embryonic stem cells and the prospects for future therapies. Gene Therapy, 2006, 13, 478-486.	4.5	19
129	Expression of the soybean (Kunitz) trypsin inhibitor in leaves of white clover (Trifolium repens L.). Plant Science, 2005, 168, 1211-1220.	3.6	18
130	miR-29 Sustains B Cell Survival and Controls Terminal Differentiation via Regulation of PI3K Signaling. Cell Reports, 2020, 33, 108436.	6.4	18
131	Purification and characterisation of two ACC oxidases expressed differentially during leaf ontogeny in white clover. Physiologia Plantarum, 2000, 110, 13-21.	5.2	17
132	Knockâ€down of transcript abundance of a family of Kunitz proteinase inhibitor genes in white clover () Tj ETQc 1188-1201.	10 0 0 rgB ⁻ 7.3	T /Overlock 10 16
133	Kunitz Proteinase Inhibitors Limit Water Stress Responses in White Clover (Trifolium repens L.) Plants. Frontiers in Plant Science, 2017, 8, 1683.	3.6	16
134	Partially Penetrant Postnatal Lethality of an Epithelial Specific MicroRNA in a Mouse Knockout. PLoS ONE, 2013, 8, e76634.	2.5	16
135	Biochemical Methods for Analysis of Kinetoplastid RNA Editing. Methods, 1998, 15, 15-26.	3.8	15
136	Identification and Characterisation of Proteinase Inhibitors and Their Genes from Seeds of Apple (Malus domestica). Journal of Biochemistry, 2003, 134, 31-42.	1.7	15
137	Molecular and biochemical characterisation of a serine acetyltransferase of onion, Allium cepa (L.). Phytochemistry, 2005, 66, 1407-1416.	2.9	15
138	Changes in 1-aminocyclopropane-1-carboxlate (ACC) oxidase expression and enzyme activity in response to excess manganese in white clover (Trifolium repens L.). Plant Physiology and Biochemistry, 2011, 49, 1013-1019.	5.8	15
139	A Whole-Genome RNA Interference Screen Reveals a Role forSpry2in Insulin Transcription and the Unfolded Protein Response. Diabetes, 2017, 66, 1703-1712.	0.6	15
140	Tracing cellular heterogeneity in pooled genetic screens via multi-level barcoding. BMC Genomics, 2019, 20, 107.	2.8	15
141	Chapter 27 Flexibility and Commitment in Plant Cells During Development. Current Topics in Developmental Biology, 1986, 20, 383-396.	2.2	13
142	Genotypic variation in the sulfur assimilation and metabolism of onion (Allium cepa L.) I. Plant composition and transcript accumulation. Phytochemistry, 2011, 72, 882-887.	2.9	13
143	Regulation of root growth by auxin and ethylene is influenced by phosphate supply in white clover (Trifolium repens L.). Plant Growth Regulation, 2012, 66, 179-190.	3.4	13
144	Identification of MiR-205 As a MicroRNA That Is Highly Expressed in Medullary Thymic Epithelial Cells. PLoS ONE, 2015, 10, e0135440.	2.5	13

#	Article	IF	Citations
145	Identification and Characterization of an Ionically-Bound Cell Wall Glycoprotein Expressed Preferentially in the Leaf Rachis Abscission Zone of Sambucus nigra L Journal of Plant Physiology, 1991, 138, 63-67.	3.5	11
146	miR-205 Regulates Basal Cell Identity and Stem Cell Regenerative Potential During Mammary Reconstitution. Stem Cells, 2018, 36, 1875-1889.	3.2	11
147	Wounding induces a series of closely related trypsin/chymotrypsin inhibitory peptides in leaves of tobacco. Phytochemistry, 1994, 37, 921-926.	2.9	10
148	Characterization of Monoclonal Antibodies that Recognize the Soybean (Kunitz) Trypsin Inhibitor: Binding to the Inhibitor Interrupts the Formation of the Trypsin: Inhibitor Complex. Journal of Plant Physiology, 1995, 146, 243-248.	3.5	10
149	Genotypic variation in sulfur assimilation and metabolism of onion (Allium cepa L.) III. Characterization of sulfite reductase. Phytochemistry, 2012, 83, 34-42.	2.9	10
150	Far away from the lamppost. PLoS Biology, 2018, 16, e3000067.	5.6	10
151	High-Complexity shRNA Libraries and PI3 Kinase Inhibition in Cancer: High-Fidelity Synthetic Lethality Predictions. Cell Reports, 2019, 27, 631-647.e5.	6.4	9
152	Host–Receptor Post-Translational Modifications Refine Staphylococcal Leukocidin Cytotoxicity. Toxins, 2020, 12, 106.	3.4	9
153	Identification of two further cationic peroxidase isoenzymes secreted by peanut cells in suspension culture. Plant Physiology and Biochemistry, 1998, 36, 591-599.	5.8	8
154	Identification of cell wall proteins in roots of phosphate-deprived white clover plants. Plant Physiology and Biochemistry, 1998, 36, 305-311.	5.8	8
155	Control of Sulfur Uptake, Assimilation and Metabolism. , 0, , 348-372.		8
156	Control of Carbon Fixation in Chloroplasts. , 0, , 187-218.		8
157	Genotypic variation in sulphur assimilation and metabolism of onion (Allium cepa L.). II: Characterisation of ATP sulphurylase activity. Phytochemistry, 2011, 72, 888-896.	2.9	8
158	Lentiviral Strategies for RNAi Knockdown of Neuronal Genes. Current Protocols in Neuroscience, 2007, 39, Unit 5.26.	2.6	7
159	Discovering the complexity of the metazoan transcriptome. Genome Biology, 2014, 15, 112.	9.6	7
160	miR-205 is a critical regulator of lacrimal gland development. Developmental Biology, 2017, 427, 12-20.	2.0	7
161	Developmental regulation of 1-aminocyclopropane-1-carboxylate synthase gene expression during leaf ontogeny in white clover. Physiologia Plantarum, 2005, 124, 107-120.	5.2	6
162	Regulation of 1-aminocyclopropane-1-carboxylate oxidase gene expression during leaf ontogeny in white clover. Plant Growth Regulation, 2010, 62, 31-41.	3.4	6

#	Article	IF	Citations
163	Removal of the N-linked glycan structure from the peanut peroxidase prxPNC2: Influence on protein stability and activity. Phytochemistry, 2005, 66, 1869-1879.	2.9	5
164	Cell wall proteins in white clover: influence of plant phosphate status. Plant Physiology and Biochemistry, 1999, 37, 25-32.	5.8	4
165	Identification of Leaf Abscission Zones as a Specific Class of Target Cells for Ethylene. , 1989, , 201-210.		4
166	Tissue-specific Changes in the Pattern of Ubiquitin Conjugation of Leaf Proteins in Festuca novae-zelandiae in Response to a Water Deficit. Journal of Plant Physiology, 1999, 154, 404-407.	3.5	3
167	ACC oxidase (ACO) genes in Trifolium occidentale (L.) and their relationship to ACO genes in white clover (T. repens L.) and T. pallescens (L.). Plant Physiology and Biochemistry, 2011, 49, 420-426.	5.8	3
168	Renewable RNAi. Nature Biotechnology, 2013, 31, 319-320.	17. 5	3
169	Characterization of serine proteinase inhibitors in dry seeds of cultivated pasture grass species. Seed Science Research, 1994, 4, 335-345.	1.7	2
170	Phosphate availability regulates ethylene biosynthesis gene expression and protein accumulation in white clover (<i>Trifolium repens</i> L.) roots. Bioscience Reports, 2016, 36, .	2.4	2
171	Responses to Low P-Supply in Breeding Lines of White Clover (Trifolium Repens L.) Reveals Two Tiers of Responses. Journal of Plant Nutrition, 2014, 37, 1441-1454.	1.9	1
172	MicroRNAs in ectodermal appendages. Current Opinion in Genetics and Development, 2017, 43, 61-66.	3.3	1
173	A Genetic Interaction Map of Insulin Production Identifies Mfi as an Inhibitor of Mitochondrial Fission. Endocrinology, 2018, 159, 3321-3330.	2.8	1
174	Hormones and Signals: Identification and Description of Signalling Molecules. , 2005, , 6-41.		0
175	Cell-to-Cell Signalling: Short and Long Distance. , 2005, , 42-75.		0
176	Population Diversity of Cell Types and Target Identification in Higher Plants., 2005,, 76-97.		0
177	Flexibility of Cell Types and the Target Cell Status. , 2005, , 98-116.		0
178	Terminally Committed Cell Types and the Target Status. , 2005, , 117-145.		0
179	The Mechanisms of Target Cell Perception and Response to Specific Signals. , 2005, , 146-178.		0
180	Hormone Action and the Relief of Repression. , 2005, , 179-197.		0

#	Article	IF	CITATIONS
181	The Phenomenon of Hormonal Cross-Talk. , 2005, , 198-204.		O
182	Characterization of Adenosine 5′-Phospho-Sulfate Kinase (APSK) Genes from Higher Plants. , 2012, , 67-70.		0
183	T cell activation induces proteasomal degradation of Argonaute and rapid remodeling of the microRNA repertoire. Journal of Cell Biology, 2013, 200, i9-i9.	5.2	O
184	Next-Generation NAMPT Inhibitors For ALL Identified By Sequential High-Throughput Phenotypic Chemical and Functional Genomic Screens. Blood, 2013, 122, 171-171.	1.4	0
185	Abstract B232: PIM1 kinase is essential for the growth of MYC-overexpressing triple-negative breast tumors and is an efficacious therapeutic target , 2013 , , .		O
186	Abstract LB-122: PIM1 kinase inhibition halts the growth of MYC-overexpressing triple-negative breast tumors. , 2014, , .		0
187	Abstract B22: Screening and validation of combination therapy in T cell leukemia. , 2016, , .		O
188	miR-15/16 Restrain Memory T Cell Differentiation, Cell Cycle, and Survival. SSRN Electronic Journal, 0, ,	0.4	0
189	CD25-Dependent Feedback Control of the B-Cell Receptor and Its Oncogenic Mimics in B-Cell Malignancies. Blood, 2018, 132, 776-776.	1.4	0