Marjan Bahraminasab

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8623425/publications.pdf

Version: 2024-02-01

471371 377752 42 1,458 17 34 citations h-index g-index papers 46 46 46 1162 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	On the manufacture of a porous alumina-titanium biocomposite by spark plasma sintering. Materials Chemistry and Physics, 2022, 280, 125831.	2.0	4
2	Photobiomodulation Therapy Affects the Elastic Modulus, Cytoskeletal Rearrangement and Migration Capability of Human Osteosarcoma Cells. Lasers in Medical Science, 2022, 37, 2855-2863.	1.0	2
3	The healing of bone defects by cell-free and stem cell-seeded 3D-printed PLA tissue-engineered scaffolds. Journal of Orthopaedic Surgery and Research, 2022, 17, .	0.9	6
4	Lowâ€cost synthesis of nanoâ€hydroxyapatite from carp bone waste: Effect of calcination time and temperature. International Journal of Applied Ceramic Technology, 2021, 18, 573-582.	1.1	8
5	In vivo performance of Al2O3-Ti bone implants in the rat femur. Journal of Orthopaedic Surgery and Research, 2021, 16, 79.	0.9	9
6	Cubic Lattice Structures of Ti6Al4V under Compressive Loading: Towards Assessing the Performance for Hard Tissue Implants Alternative. Materials, 2021, 14, 3866.	1.3	14
7	Osteoblastic cell response to Al ₂ O ₃ -Ti composites as bone implant materials. BioImpacts, 2021, , .	0.7	1
8	Chemopreventive effect of spirulina microalgae on an animal model of glioblastoma via <scp>downâ€regulation</scp> of <scp>PI3K</scp> / <scp>AKT</scp> / <scp>mTOR</scp> and <scp>upâ€regulation</scp> of <scp>miR</scp> â€34a/ <scp>miRâ€125B</scp> expression. Phytotherapy Research, 2021, 35, 6452-6461.	2.8	7
9	Bond strength and microleakage of different types of cements in stainless steel crown of primary molar teeth. Dental Research Journal, 2021, 18, 58.	0.2	1
10	Bone Scaffolds: An Incorporation of Biomaterials, Cells, and Biofactors. ACS Biomaterials Science and Engineering, 2021, 7, 5397-5431.	2.6	41
11	On the machinability and properties of Ti–6Al–4V biomaterial with n-HAp powder–mixed ED machining. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2020, 234, 232-242.	1.0	30
12	Challenges on optimization of 3D-printed bone scaffolds. BioMedical Engineering OnLine, 2020, 19, 69.	1.3	117
13	Adaptation of MC3T3 cell line to Dulbecco's Modified Eagle's medium. Tissue and Cell, 2020, 64, 101341.	1.0	8
14	Computational Tailoring of Orthopaedic Biomaterials: Design Principles and Aiding Tools. Materials Horizons, 2019, , 15-31.	0.3	5
15	Effect of Molybdenum Content on Structure and Properties of a Co-Cr Biomedical Alloy. Journal of Materials Engineering and Performance, 2019, 28, 6340-6353.	1.2	9
16	Corrosion of Al2O3-Ti composites under inflammatory condition in simulated physiological solution. Materials Science and Engineering C, 2019, 102, 200-211.	3.8	23
17	Mechanobiological assessment of Ti-6Al-4V fabricated via selective laser melting technique: a review. Rapid Prototyping Journal, 2019, 25, 1266-1284.	1.6	36
18	Electrochemical corrosion of Ti-Al2O3 biocomposites in Ringer's solution. Journal of Alloys and Compounds, 2019, 777, 34-43.	2.8	24

#	Article	IF	Citations
19	Preliminary evaluations on development of new materials for hip joint femoral head. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2019, 233, 885-899.	0.7	10
20	Biocomposites for Hard Tissue Replacement and Repair. Materials Horizons, 2018, , 281-296.	0.3	9
21	State of the art review on design and manufacture of hybrid biomedical materials: Hip and knee prostheses. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2017, 231, 785-813.	1.0	28
22	Al2O3-Ti functionally graded material prepared by spark plasma sintering for orthopaedic applications. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 72, 82-89.	1.5	53
23	Biocompatibility evaluation and corrosion resistance of tungsten added Co-30Cr-4Mo-1Ni alloy. Bio-Medical Materials and Engineering, 2017, 28, 687-701.	0.4	9
24	Multiple objective decision-making for material and geometry design., 2016,, 127-146.		6
25	Case studies of materials selection and design. , 2016, , 147-225.		0
26	Multi-attribute decision-making for ranking of candidate materials. , 2016, , 81-126.		2
27	Multi-criteria decision-making for materials selection. , 2016, , 63-80.		10
28	The importance of decision support in materials selection., 2016,, 1-23.		3
29	Multicriteria Decision Analysis in Improving Quality of Design in Femoral Component of Knee Prostheses: Influence of Interface Geometry and Material. Advances in Materials Science and Engineering, 2015, 2015, 1-16.	1.0	12
30	Multicriteria Decision Analysis in Material Design, Selection, and Manufacturing. Advances in Materials Science and Engineering, 2015, 2015, 1-2.	1.0	0
31	Multi-objective design optimization of functionally graded material for the femoral component of a total knee replacement. Materials & Design, 2014, 53, 159-173.	5.1	56
32	On the influence of shape and material used for the femoral component pegs in knee prostheses for reducing the problem of aseptic loosening. Materials & Design, 2014, 55, 416-428.	5.1	30
33	Material tailoring of the femoral component in a total knee replacement to reduce the problem of aseptic loosening. Materials & Design, 2013, 52, 441-451.	5.1	40
34	Aseptic loosening of femoral components – Materials engineering and design considerations. Materials & Design, 2013, 44, 155-163.	5.1	81
35	Using Design of Experiments Methods for Assessing Peak Contact Pressure to Material Properties of Soft Tissue in Human Knee. Journal of Medical Engineering, 2013, 2013, 1-11.	1.1	9
36	Aseptic loosening of femoral components – A review of current and future trends in materials used. Materials & Design, 2012, 42, 459-470.	5.1	74

#	Article	IF	CITATIONS
37	A target-based normalization technique for materials selection. Materials & Design, 2012, 35, 647-654.	5.1	101
38	A framework for weighting of criteria in ranking stage of material selection process. International Journal of Advanced Manufacturing Technology, 2012, 58, 411-420.	1.5	189
39	A comprehensive VIKOR method for material selection. Materials & Design, 2011, 32, 1215-1221.	5.1	249
40	Material selection for femoral component of total knee replacement using comprehensive VIKOR. Materials & Design, 2011, 32, 4471-4477.	5.1	130
41	NiTi Shape Memory Alloys, Promising Materials in Orthopedic Applications. , 0, , .		9
42	Cytotoxicity and Ion Release of Functionally Graded Al ₂ O ₃ -Ti Orthopedic Biomaterial. Journal of Biomimetics, Biomaterials and Biomedical Engineering, 0, 54, 103-118.	0.5	1