List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8622749/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evaluation of Al2O3 and ZrO2 addition to reduced graphene oxide (rGO) supports and their interplay with Cu sites in the catalyst surface. Inorganic Chemistry Communication, 2022, 142, 109591.	1.8	0
2	Fast carbon nanotube growth on carbon fiber keeping tensile strength. Composite Interfaces, 2021, 28, 859-878.	1.3	3
3	Characterization of interlaminar shear properties of nanostructured unidirectional composites. Composite Interfaces, 2021, 28, 191-208.	1.3	4
4	Laser cladding of vanadium carbide interlayer for CVD diamond growth on steel substrate. Surface and Coatings Technology, 2021, 421, 127387.	2.2	8
5	Mitigating residual stress of high temperature CVD diamond films on vanadium carbide coated steel. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2021, 39, .	0.9	7
6	Development and study of low-cost VACNT/PDMS stretchable and resistive strain sensor. Sensors and Actuators A: Physical, 2020, 315, 112358.	2.0	7
7	Determination of tadalafil in pharmaceutical samples by vertically oriented multi-walled carbon nanotube electrochemical sensing device. Journal of Electroanalytical Chemistry, 2020, 877, 114501.	1.9	12
8	CVD-diamond nanoparticle synthesis for DLC film application. Journal of Nanoparticle Research, 2020, 22, 1.	0.8	6
9	Vertically aligned carbon nanotubes (VACNT) surfaces coated with polyethylene for enhanced dew harvesting. Diamond and Related Materials, 2020, 107, 107837.	1.8	7
10	Growth and characterization of multilayer hot-filament chemical vapor deposition diamond coatings on WC–Co substrates. Surface Innovations, 2019, 7, 36-43.	1.4	6
11	Water Vapor Condensation from Atmospheric Air by Super-Hydrophobic VACNTs Growth on Stainless Steel Pipes. MRS Advances, 2019, 4, 1929-1936.	0.5	2
12	A novel method to mitigate residual stress in CVD diamond film on steel substrates with a single intermediate layer. Surface and Coatings Technology, 2019, 357, 93-102.	2.2	15
13	Influence of catalyst particles on multi-walled carbon nanotubes morphology and structure. Fullerenes Nanotubes and Carbon Nanostructures, 2018, 26, 315-323.	1.0	7
14	Graphene sheets produced by carbon nanotubes unzipping and their performance as supercapacitor. Applied Surface Science, 2018, 446, 201-208.	3.1	49
15	Process and characterization of reclaimed carbon fiber composites by pyrolysis and oxidation, assisted by thermal plasma to avoid pollutants emissions. Journal of Composite Materials, 2018, 52, 1379-1398.	1.2	13
16	Adherent HFCVD diamond on steels substrates using vanadium carbide intermediate layer. Diamond and Related Materials, 2018, 89, 218-226.	1.8	7
17	Water vapor condensation and collection by super-hydrophilic and super-hydrophobic VACNTs. Diamond and Related Materials, 2018, 87, 43-49.	1.8	18
18	Thin-film nanocomposites of BDD/CNT deposited on carbon fiber. Diamond and Related Materials, 2017, 75, 116-122.	1.8	9

#	Article	IF	CITATIONS
19	Synthesis and Characterization of Carbon Fiber Based Porous CNTs-RGO/BDD for Application as Microelectrodes. MRS Advances, 2017, 2, 2247-2252.	0.5	1
20	Composite intermediate layer for CVD diamond film on steel substrate. MRS Advances, 2017, 2, 2211-2216.	0.5	1
21	Porous boron-doped diamond/CNT electrode as electrochemical sensor for flow-injection analysis applications. Diamond and Related Materials, 2017, 74, 182-190.	1.8	16
22	Characterization and tribologic study in high vacuum of hydrogenated DLC films deposited using pulsed DC PECVD system for space applications. Surface and Coatings Technology, 2017, 332, 135-141.	2.2	27
23	Evaluation of the Adhesion of Ultrananocrystalline Diamond Coatings on WC-Co Substrates. Materials Today: Proceedings, 2017, 4, 11538-11543.	0.9	3
24	Simultaneous Voltammetric Determination of Paracetamol, Codeine and Caffeine on Diamondâ€like Carbon Porous Electrodes. Electroanalysis, 2017, 29, 907-916.	1.5	21
25	Diamond and Carbon Nanotube Composites for Supercapacitor Devices. Journal of Electronic Materials, 2017, 46, 929-935.	1.0	11
26	Interlayers Applied to CVD Diamond Deposition on Steel Substrate: A Review. Coatings, 2017, 7, 141.	1.2	39
27	Synthesis of Vanadium Interface for HFCVD Diamond Deposition on Steel Surface. Materials Research, 2017, 20, 248-253.	0.6	2
28	Diamond Films on Stainless Steel Substrates with an Interlayer Applied by Laser Cladding. Materials Research, 2017, 20, 543-548.	0.6	10
29	DLC Films Grown On Steel Using An Innovator Active Screen System For PECVD Technique. Materials Research, 2016, 19, 882-888.	0.6	12
30	Graphene oxide/multi-walled carbon nanotubes as nanofeatured scaffolds for the assisted deposition of nanohydroxyapatite: characterization and biological evaluation. International Journal of Nanomedicine, 2016, 11, 2569.	3.3	20
31	Functionalized-Carbon Nanotubes with Physisorbed Ionic Liquid as Filler for Epoxy Nanocomposites. Journal of Nanoscience and Nanotechnology, 2016, 16, 9132-9140.	0.9	16
32	Methods to grow porous diamond film doped with boron and nitrogen by deposition on carbon nanotubes. Diamond and Related Materials, 2016, 65, 198-203.	1.8	10
33	Effect of Argon during Diamond Deposition by Hot Filament Chemical Vapor Deposition. Materials Science Forum, 2016, 869, 721-726.	0.3	1
34	Freestanding Aligned Multi-walled Carbon Nanotubes for Supercapacitor Devices. Journal of Electronic Materials, 2016, 45, 5781-5788.	1.0	22
35	Nano- and microcrystalline diamond deposition on pretreated WC–Co substrates: structural properties and adhesion. Materials Research Express, 2016, 3, 025601.	0.8	22
36	Promising electrochemical performance of high-surface-area boron-doped diamond/carbon nanotube electroanalytical sensors. Journal of Solid State Electrochemistry, 2016, 20, 2403-2409.	1.2	25

#	Article	IF	CITATIONS
37	Laser cladding of SiC multilayers for diamond deposition on steel substrates. Diamond and Related Materials, 2016, 65, 105-114.	1.8	26
38	Impedance spectroscopy of silicone rubber and vertically-aligned carbon nanotubes composites under tensile strain. Materials Research Society Symposia Proceedings, 2015, 1752, 83-88.	0.1	0
39	Influence of Boriding Process in Adhesion of CVD Diamond Films on Tungsten Carbide Substrates. Materials Research, 2015, 18, 925-930.	0.6	11
40	Combined effect of nitrogen doping and nanosteps on microcrystalline diamond films for improvement of field emission. Applied Surface Science, 2015, 334, 222-226.	3.1	5
41	Electrochemical determination of rosuvastatin calcium in pharmaceutical and human body fluid samples using a composite of vertically aligned carbon nanotubes and graphene oxide as the electrode material. Sensors and Actuators B: Chemical, 2015, 218, 51-59.	4.0	30
42	Control of the Length and Density of Carbon Nanotubes Grown on Carbon Fiber for Composites Reinforcement. Materials Research Society Symposia Proceedings, 2015, 1752, 77-82.	0.1	3
43	An evaluation of the tribological characteristics of DLC films grown on Inconel Alloy 718 using the Active Screen Plasma technique in a Pulsed-DC PECVD system. Surface and Coatings Technology, 2015, 284, 235-239.	2.2	16
44	Analysis of cellular adhesion on superhydrophobic and superhydrophilic vertically aligned carbon nanotube scaffolds. Materials Science and Engineering C, 2015, 48, 365-371.	3.8	20
45	High surface area diamond-like carbon electrodes grown on vertically aligned carbon nanotubes. Carbon, 2015, 82, 288-296.	5.4	19
46	Preparation and electroanalytical applications of vertically aligned carbon nanotubes. SPR Electrochemistry, 2015, , 50-96.	0.7	3
47	Friction and Wear Behavior Evaluation of DLC Films Grown in Multilayer of Carbon and Silicon. Materials Science Forum, 2014, 802, 392-397.	0.3	Ο
48	Vertically Aligned Carbon Nanotubes/Carbon Fiber Composites for Electrochemical Applications. Materials Science Forum, 2014, 802, 192-196.	0.3	3
49	Micro, Nano and Ultranano-Crystalline Diamond Deposition. Materials Science Forum, 2014, 802, 168-173.	0.3	3
50	Effect of Heat Treatment on Microstructure and Mechanical Property of Diamonds Substrates Brazed with Active Filler Metal. Defect and Diffusion Forum, 2014, 353, 254-258.	0.4	0
51	Electrochemical behaviour of vertically aligned carbon nanotubes and graphene oxide nanocomposite as electrode material. Electrochimica Acta, 2014, 119, 114-119.	2.6	79
52	Effect of Multi-Walled Carbon Nanotubes Incorporation on the Structure, Optical and Electrochemical Properties of Diamond-Like Carbon Thin Films. Journal of the Electrochemical Society, 2014, 161, H290-H295.	1.3	22
53	Graphene and carbon nanotube composite enabling a new prospective treatment for trichomoniasis disease. Materials Science and Engineering C, 2014, 41, 65-69.	3.8	20
54	Oxygen Plasma Exfoliated Vertically-Aligned Carbon Nanotubes as Electrodes for Ultrasensitive Stripping Detection of Pb2+. Journal of the Electrochemical Society, 2014, 161, H321-H325.	1.3	12

#	Article	IF	CITATIONS
55	Reduced graphene oxide and vertically aligned carbon nanotubes superhydrophilic films for supercapacitors devices. Materials Research Bulletin, 2014, 49, 487-493.	2.7	42
56	Porous Boron-Doped Diamond/Carbon Nanotube Electrodes. ACS Applied Materials & Interfaces, 2014, 6, 990-995.	4.0	134
57	Deposition of amorphous hydrogenated carbon films on steel surfaces through the enhanced asymmetrical modified bipolar pulsed-DC PECVD method. Surface and Coatings Technology, 2014, 260, 133-138.	2.2	23
58	Electrochemical Performance of Porous Diamond-like Carbon Electrodes for Sensing Hormones, Neurotransmitters, and Endocrine Disruptors. ACS Applied Materials & Interfaces, 2014, 6, 21086-21092.	4.0	42
59	Differential pulse adsorptive stripping voltammetric determination of nanomolar levels of atorvastatin calcium in pharmaceutical and biological samples using a vertically aligned carbon nanotube/graphene oxide electrode. Analyst, The, 2014, 139, 2832.	1.7	37
60	Electrodeposition of Zinc Oxide NanoSheets on Exfoliated Tips of Carbon Nanotube Films. Advanced Materials Research, 2014, 975, 50-55.	0.3	1
61	Activation energies for the growth of diamond films and the renucleation of diamond grains during film growth. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2014, 32, 031808.	0.6	6
62	Graphene and carbon nanotube nanocomposite for gene transfection. Materials Science and Engineering C, 2014, 39, 288-298.	3.8	51
63	Cure study of epoxy resin reinforced with multiwalled carbon nanotubes by Raman and luminescence spectroscopy. Journal of Applied Polymer Science, 2013, 127, 544-553.	1.3	47
64	In vitro and in vivo studies of a novel nanohydroxyapatite/superhydrophilic vertically aligned carbon nanotube nanocomposites. Journal of Materials Science: Materials in Medicine, 2013, 24, 1723-1732.	1.7	18
65	Field Emission from Hybrid Diamond-like Carbon and Carbon Nanotube Composite Structures. ACS Applied Materials & Interfaces, 2013, 5, 12238-12243.	4.0	69
66	Comparative study of the tribological behavior under hybrid lubrication of diamond-like carbon films with different adhesion interfaces. Applied Surface Science, 2013, 285, 645-648.	3.1	12
67	Development of nanocrystalline diamond windows for application in synchrotron beamlines. Vacuum, 2013, 89, 21-25.	1.6	19
68	Effect of ultrasound irradiation on the production of nHAp/MWCNT nanocomposites. Materials Science and Engineering C, 2013, 33, 4305-4312.	3.8	38
69	An evaluation of chondrocyte morphology and gene expression on superhydrophilic vertically-aligned multi-walled carbon nanotube films. Materials Science and Engineering C, 2013, 33, 641-647.	3.8	22
70	In vitro biomineralization of a novel hydroxyapatite/superhydrophilic multiwalled carbon nanotube nanocomposite using simulated body fluids. Materials Research, 2013, 16, 650-654.	0.6	0
71	Characterization and bioactivity study of nanohydroxyapatite on superhydrophilic vertically aligned carbon nanotubes using optical techniques. Proceedings of SPIE, 2012, , .	0.8	1
72	The valuable role of renucleation rate in ultrananocrystalline diamond growth. Diamond and Related Materials, 2012, 23, 112-119.	1.8	21

#	Article	IF	CITATIONS
73	Biomineralization of Superhydrophilic Vertically Aligned Carbon Nanotubes. Langmuir, 2012, 28, 4413-4424.	1.6	28
74	Growth of Carbon Nanotube Forests on Carbon Fibers with a SiO ₂ Interlayer. Materials Research Society Symposia Proceedings, 2012, 1451, 97-102.	0.1	2
75	Morphological Characterization of UNCD on Etched <100> Silicon. Materials Science Forum, 2012, 727-728, 1671-1676.	0.3	Ο
76	Fast functionalization of vertically aligned multiwalled carbon nanotubes using oxygen plasma. Materials Letters, 2012, 70, 89-93.	1.3	87
77	Efficient method to produce biomineralizated nanohydroxyapatite/vertically aligned multiwalled carbon nanotube scaffolds. Materials Letters, 2012, 79, 166-169.	1.3	8
78	Cytocompatibility studies of vertically-aligned multi-walled carbon nanotubes: Raw material and functionalized by oxygen plasma. Materials Science and Engineering C, 2012, 32, 648-652.	3.8	22
79	CVD of Alternated MCD and NCD Films on Cemented Carbide Inserts. , 2012, , 369-382.		Ο
80	INFLUENCE OF THE SILICON INTERLAYER ON DIAMOND-LIKE CARBON FILMS DEPOSITED ON GLASS SUBSTRATES. Revista UniVap, 2012, 18, 112.	0.1	0
81	Confinement effect and spreading of water into microchannels fabricated on the VACNT surfaces. Diamond and Related Materials, 2011, 20, 931-936.	1.8	4
82	Evaluation of residual iron in carbon nanotubes purified by acid treatments. Applied Surface Science, 2011, 258, 641-648.	3.1	133
83	Epoxy Composite with Milimetric Carbon Nanotubes. Journal of Nanoscience and Nanotechnology, 2011, 11, 9025-9031.	0.9	1
84	Tribological behavior under aggressive environment of diamond-like carbon films with incorporated nanocrystalline diamond particles. Surface and Coatings Technology, 2011, 206, 434-439.	2.2	11
85	Tritrichomonas foetus adhere to superhydrophilic vertically aligned multi-walled carbon nanotube surface. Materials Science and Engineering C, 2011, 31, 1614-1617.	3.8	4
86	Increasing mouse embryonic fibroblast cells adhesion on superhydrophilic vertically aligned carbon nanotube films. Materials Science and Engineering C, 2011, 31, 1505-1511.	3.8	24
87	Influence of polar groups on the wetting properties of vertically aligned multiwalled carbon nanotube surfaces. Theoretical Chemistry Accounts, 2011, 130, 1061-1069.	0.5	20
88	Proposed model for growth preference of plate-like nanohydroxyapatite crystals on superhydrophilic vertically aligned carbon nanotubes by electrodeposition. Theoretical Chemistry Accounts, 2011, 130, 1071-1082.	0.5	13
89	Rapid Obtaining of Nano-Hydroxyapatite Bioactive Films on NiTi Shape Memory Alloy by Electrodeposition Process. Journal of Materials Engineering and Performance, 2011, 20, 793-797.	1.2	23
90	Influence of crystalline diamond nanoparticles on diamond-like carbon friction behavior. Applied Surface Science, 2011, 257, 7387-7393.	3.1	11

#	Article	IF	CITATIONS
91	Analyses of residual iron in carbon nanotubes produced by camphor/ferrocene pyrolysis and purified by high temperature annealing. Applied Surface Science, 2011, 257, 8038-8043.	3.1	57
92	Investigation into the antibacterial property and bacterial adhesion of diamond-like carbon films. Vacuum, 2011, 85, 662-666.	1.6	33
93	Tribological effect of iron oxide residual on the DLC film surface under seawater and saline solutions. Surface Science, 2011, 605, 783-787.	0.8	15
94	Antibacterial activity of fluorinated diamond-like carbon films produced by PECVD. Surface and Coatings Technology, 2010, 204, 2986-2990.	2.2	38
95	Total re-establishment of superhydrophobicity of vertically-aligned carbon nanotubes by Co2 laser treatment. Surface and Coatings Technology, 2010, 204, 3073-3077.	2.2	19
96	Improvement of diamond-like carbon electrochemical corrosion resistance by addition of nanocrystalline diamond. Journal of Colloid and Interface Science, 2010, 342, 636-637.	5.0	9
97	Crystalline diamond particles into diamond-like carbon films: The influence of the particle sizes on the electrochemical corrosion resistance. Surface and Coatings Technology, 2010, 204, 2600-2604.	2.2	13
98	An evaluation of cell proliferation and adhesion on vertically-aligned multi-walled carbon nanotube films. Carbon, 2010, 48, 245-254.	5.4	59
99	Growth of carbon nanotube forests on carbon fibers with an amorphous silicon interface. Carbon, 2010, 48, 3655-3658.	5.4	45
100	CO2 laser treatment for stabilization of the superhydrophobicity of carbon nanotube surfaces. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2010, 28, 1153-1157.	0.6	18
101	Thermodiffused vanadium carbide interface for diamond films on steel and cemented carbides substrates. Surface Engineering, 2010, 26, 506-510.	1.1	18
102	Thermal Annealing and Electrochemical Purification of Multi-Walled Carbon Nanotubes Produced by Camphor/Ferrocene Mixtures. Journal of Nanoscience and Nanotechnology, 2010, 10, 1296-1303.	0.9	16
103	Wettability control on vertically-aligned multi-walled carbon nanotube surfaces with oxygen pulsed DC plasma and CO2 laser treatments. Diamond and Related Materials, 2010, 19, 752-755.	1.8	52
104	Improvement of DLC electrochemical corrosion resistance by addiction of fluorine. Diamond and Related Materials, 2010, 19, 537-540.	1.8	46
105	Growth and characterization of diamond micro and nano crystals obtained using different methane concentration in argon-rich gas mixture. Diamond and Related Materials, 2010, 19, 768-771.	1.8	9
106	Fast Preparation of Hydroxyapatite/Superhydrophilic Vertically Aligned Multiwalled Carbon Nanotube Composites for Bioactive Application. Langmuir, 2010, 26, 18308-18314.	1.6	53
107	Monolayer formation of human osteoblastic cells on vertically aligned multiwalled carbon nanotube scaffolds. Cell Biology International, 2010, 34, 393-398.	1.4	11
108	Characterization of crystalline diamond incorporated diamond-like carbon films. Diamond and Related Materials, 2010, 19, 1139-1143.	1.8	15

#	Article	IF	CITATIONS
109	Crescimento de diamante CVD em substratos de silÃcio de grande área. Revista Escola De Minas, 2010, 63, 279-285.	0.1	0
110	Deposition of Hard and Adherent Diamond-Like Carbon Films Inside Steel Tubes Using a Pulsed-DC Discharge. Journal of Nanoscience and Nanotechnology, 2009, 9, 3891-3897.	0.9	19
111	Use of near atmospheric pressure and low pressure techniques to modification DLC film surface. Surface and Coatings Technology, 2009, 204, 64-68.	2.2	16
112	Two-step growth of HFCVD diamond films over large areas. Vacuum, 2009, 83, 1054-1056.	1.6	2
113	Antibacterial activity of DLC films containing TiO2 nanoparticles. Journal of Colloid and Interface Science, 2009, 340, 87-92.	5.0	104
114	Wettability and antibacterial activity of modified diamond-like carbon films. Applied Surface Science, 2009, 255, 8377-8382.	3.1	38
115	Diamond-like carbon films produced from high deposition rates exhibit antibacterial activity. Synthetic Metals, 2009, 159, 2167-2169.	2.1	19
116	Cytotoxicity analysis of vertically aligned multi-walled carbon nanotubes by colorimetric assays. Synthetic Metals, 2009, 159, 2165-2166.	2.1	6
117	Antibacterial activity of DLC and Ag–DLC films produced by PECVD technique. Diamond and Related Materials, 2009, 18, 1010-1014.	1.8	104
118	Influence of substrate temperature on formation of ultrananocrystalline diamond films deposited by HFCVD argon-rich gas mixture. Diamond and Related Materials, 2009, 18, 1283-1288.	1.8	56
119	The Activation Energy for Nanocrystalline Diamond Films Deposited from an Ar/H ₂ /CH ₄ Hot-Filament Reactor. Journal of Nanoscience and Nanotechnology, 2009, 9, 3944-3948.	0.9	8
120	Biocompatibility of multi-walled carbon nanotubes grown on titanium and silicon surfaces. Materials Science and Engineering C, 2008, 28, 532-538.	3.8	32
121	Adherent amorphous hydrogenated carbon films on metals deposited by plasma enhanced chemical vapor deposition. Thin Solid Films, 2008, 516, 4011-4017.	0.8	65
122	Morphological and electrochemical properties of boron-doped diamond films on carbon cloths with enhanced surface area. Thin Solid Films, 2008, 516, 4934-4939.	0.8	6
123	Cell viability and adhesion on as grown multi-wall carbon nanotube films. Materials Science and Engineering C, 2008, 28, 264-269.	3.8	59
124	Tribological and mechanical properties of DLC film obtained on metal surface by an enhanced and low-cost pulsed-DC discharge. International Journal of Surface Science and Engineering, 2007, 1, 417.	0.4	14
125	Detection of N and B in doped diamond films by ERDA method and related electrochemical characteristics. Diamond and Related Materials, 2007, 16, 174-180.	1.8	8
126	A comparative study of diamond growth on tungsten wires by using methane and graphite as the carbon source. Surface and Coatings Technology, 2007, 201, 7382-7386.	2.2	2

#	Article	IF	CITATIONS
127	A comparison of DLC film properties obtained by r.f. PACVD, IBAD, and enhanced pulsed-DC PACVD. Surface and Coatings Technology, 2007, 202, 549-554.	2.2	44
128	Influence of diameter in the Raman spectra of aligned multi-walled carbon nanotubes. Carbon, 2007, 45, 913-921.	5.4	204
129	DLC film properties obtained by a low cost and modified pulsed-DC discharge. Thin Solid Films, 2007, 516, 272-276.	0.8	41
130	Taxa de crescimento de filmes de diamante CVD em superfÃcies de molibdênio. Revista Escola De Minas, 2007, 60, 227-231.	0.1	2
131	Raman and infrared spectroscopy studies of carbon nitride films prepared on Si (100) substrates by ion beam assisted deposition. Journal of the Brazilian Chemical Society, 2006, 17, 1163-1169.	0.6	14
132	Cutting characteristics of dental diamond burs made with CVD technology. Brazilian Oral Research, 2006, 20, 155-161.	0.6	24
133	Adherent diamond-like carbon coatings on metals via PECVD and IBAD. Brazilian Journal of Physics, 2006, 36, 986-989.	0.7	8
134	Comparative study of first- and second-order Raman spectra of MWCNT at visible and infrared laser excitation. Carbon, 2006, 44, 2202-2211.	5.4	408
135	DLC cold welding prevention films on a Ti6Al4V alloy for space applications. Surface and Coatings Technology, 2006, 200, 2587-2593.	2.2	30
136	Morphological and electrochemical studies of spherical boron doped diamond electrodes. Thin Solid Films, 2006, 513, 364-368.	0.8	5
137	Adhesion studies of diamond-like carbon films deposited on Ti6Al4V substrate with a silicon interlayer. Thin Solid Films, 2006, 515, 375-379.	0.8	118
138	Cell Viability and Adhesion on as Grown Vertically Aligned Carbon Nanotubesâ^š. Materials Research Society Symposia Proceedings, 2006, 950, 1.	0.1	0
139	Wettability and corrosion tests of diamond films grown on Ti6Al4V alloy. Surface and Coatings Technology, 2005, 194, 271-275.	2.2	27
140	Micro and nanocrystalline diamond formation on reticulated vitreous carbon substrate. Chemical Physics Letters, 2005, 414, 412-416.	1.2	10
141	CVD Diamond Films on WC-Co with a Vanadium Carbide Thermal Diffusion Layer. , 2004, , .		Ο
142	Adherence Measurements of Nanodiamond Thin Films Grown on Ti6Al4V Alloy. Journal of Metastable and Nanocrystalline Materials, 2004, 20-21, 753-757.	0.1	3
143	Turning of CFRC Composites Using Si ₃ N ₄ and Thin CVD Diamond Coated Si ₃ N ₄ Tools. Materials Science Forum, 2004, 455-456, 609-613.	0.3	5
144	Micro-Raman spectroscopy for stress analysis on large area diamond/Ti6Al4V electrodes. Diamond and Related Materials, 2004, 13, 526-532.	1.8	9

#	Article	IF	CITATIONS
145	Residual stresses and crystalline quality of heavily boron-doped diamond films analysed by micro-Raman spectroscopy and X-ray diffraction. Carbon, 2003, 41, 1301-1308.	5.4	92
146	Efficiency study of perforated diamond electrodes for organic compounds oxidation process. Diamond and Related Materials, 2003, 12, 577-582.	1.8	25
147	Boron doped diamond thin films on large area Ti6Al4V substrates for electrochemical application. Materials Research, 2003, 6, 57-61.	0.6	8
148	Studies of molybdenum surface modification for growth of adherent CVD diamond film. Materials Research, 2003, 6, 305-309.	0.6	4
149	Comparison of diamond growth with different gas mixtures in microwave plasma asssited chemical vapor deposition (MWCVD). Materials Research, 2003, 6, 63-70.	0.6	1
150	Raman analyses of residual stress in diamond thin films grown on Ti6Al4V alloy. Materials Research, 2003, 6, 51-56.	0.6	11
151	Chemical vapor deposition diamond thin films growth on Ti6AL4V using the Surfatron system. Diamond and Related Materials, 2002, 11, 550-554.	1.8	9
152	Very adherent CVD diamond film on modified molybdenum surface. Diamond and Related Materials, 2002, 11, 532-535.	1.8	12
153	Friction coefficient measurements By LFM on DLC films as function of sputtering deposition parameters. Diamond and Related Materials, 2002, 11, 1135-1138.	1.8	14
154	Analysis of residual stress in diamond films by x-ray diffraction and micro-Raman spectroscopy. Journal of Applied Physics, 2002, 91, 2466-2472.	1.1	67
155	Kinetics study of diamond electrodes at different levels of boron doping as quasi-reversible systems. Diamond and Related Materials, 2002, 11, 1523-1531.	1.8	74
156	Electrochemical activity of boron-doped diamond electrodes grown on carbon fiber cloths. Diamond and Related Materials, 2002, 11, 657-661.	1.8	31
157	Synchrotron radiation X-ray analysis of boron-doped diamond films grown by hot-filament assisted chemical vapor deposition. Diamond and Related Materials, 2002, 11, 153-159.	1.8	17
158	Multi-layer structure for chemical vapor deposition diamond on electroplated diamond tools. Diamond and Related Materials, 2001, 10, 332-336.	1.8	20
159	Influence of CF4 addition for HFCVD diamond growth on silicon nitride substrates. Diamond and Related Materials, 2001, 10, 2002-2009.	1.8	5
160	Stress study of HFCVD boron-doped diamond films by X-ray diffraction measurements. Diamond and Related Materials, 2001, 10, 750-754.	1.8	27
161	Diamond-like-carbon and molybdenum disulfide nanotribology studies using atomic force measurements. Diamond and Related Materials, 2001, 10, 1049-1052.	1.8	31
162	Diamond Coating of Porous Silicon. Journal of Porous Materials, 2000, 7, 401-405.	1.3	9

#	Article	IF	CITATIONS
163	OES study of the plasma during CVD diamond growth using CCl 4 /H 2 /O 2 mixtures. Diamond and Related Materials, 2000, 9, 368-372.	1.8	8
164	Crescimento de diamante dopado com Boro para eletrodos de uso em eletroquÃmica. Materials Research, 1999, 2, 99-103.	0.6	2
165	Electrochemical characterization on semiconductors p-type CVD diamond electrodes. Brazilian Journal of Physics, 1999, 29, 760-763.	0.7	23
166	Surface modification on 304 SS by plasma-immersed ion implantation to improve the adherence of a CVD diamond film. Surface and Coatings Technology, 1999, 112, 295-298.	2.2	11
167	Diamond Chemical Vapor Deposition: Emerging Technology for Tooling Applications. Key Engineering Materials, 1998, 138-140, 195-244.	0.4	16
168	The Influence of the Temperature on the Parameters of Extended Freundlich's Isotherm. Journal of Colloid and Interface Science, 1998, 200, 126-130.	5.0	4
169	Henry's Law as a Limit for an Isotherm Model Based on a Statistical Mechanics Approach. Journal of Colloid and Interface Science, 1998, 208, 211-215.	5.0	28
170	Cylindrical CVD diamond as a high-performance small abrading device. Surface and Coatings Technology, 1998, 108-109, 437-441.	2.2	18
171	Gas phase study with CF4 and CCl2F2 addition in microwave CVD diamond growth. Diamond and Related Materials, 1998, 7, 272-275.	1.8	5
172	Evidence of enhanced atomic hydrogen production with halogens in diamond MWPACVD. Diamond and Related Materials, 1998, 7, 81-87.	1.8	8
173	Annealing-induced enhancement in the activation energy of heavily boron-doped polycrystalline diamond. Diamond and Related Materials, 1998, 7, 1259-1262.	1.8	2
174	H actinometry with CF4 addition in microwave plasma-assisted chemical vapor deposition of diamond. Diamond and Related Materials, 1997, 6, 472-475.	1.8	7
175	Mass spectrometry and diamond growth from gas mixtures. Diamond and Related Materials, 1997, 6, 490-493.	1.8	11
176	The activation energy for diamond growth from mixtures in a hot-filament reactor. Diamond and Related Materials, 1997, 6, 1172-1181.	1.8	12
177	Studies on CVD-diamond on Ti6Al4V alloy surface using hot filament assisted technique. Thin Solid Films, 1997, 308-309, 254-257.	0.8	5
178	Diamond seed consolidation onto untreated silicon substrate. Journal of Materials Science Letters, 1997, 16, 197-199.	0.5	5
179	Diamond growth with CF4 addition inhot-filament chemical vapour deposition. Journal of Materials Science, 1997, 32, 941-947.	1.7	15
180	Freundlich's Isotherm Extended by Statistical Mechanics. Journal of Colloid and Interface Science, 1997, 185, 493-496.	5.0	18

11

#	Article	IF	CITATIONS
181	Dispersion liquid properties for efficient seeding in CVD diamond nucleation enhancement. Diamond and Related Materials, 1996, 5, 1323-1332.	1.8	46
182	CVD diamond burrs — Development and applications. Diamond and Related Materials, 1996, 5, 857-860.	1.8	13
183	<title>Cutting and drilling of CVD diamond using a copper vapor laser</title> . , 1996, 2789, 345.		2
184	Very lowâ€roughness diamond film deposition using a surfaceâ€wave―sustained plasma. Journal of Applied Physics, 1996, 80, 6013-6020.	1.1	17
185	Development of chemical vapor deposition diamond burrs using hot filament. Review of Scientific Instruments, 1996, 67, 1993-1995.	0.6	7
186	Hot filament scaling-up for CVD diamond burr manufacturing. Surface and Coatings Technology, 1995, 76-77, 797-802.	2.2	10
187	Low temperature chemical vapour deposition of diamond on tungsten carbides using CF4 gas doping for machine tool applications. Vacuum, 1995, 46, 5-8.	1.6	12
188	Hot filament scaling-up for CVD diamond burr manufacturing. Surface and Coatings Technology, 1995, 76-77, 797-802.	2.2	10
189	Columnar CVD diamond growth structure on irregular surface substrates. Diamond and Related Materials, 1995, 4, 1255-1259.	1.8	26
190	Morphological studies of laser etching processes in self sustained CVD diamond wafers. Applied Surface Science, 1994, 79-80, 129-135.	3.1	33
191	Low Temperature Diamond Growth With CF4 Addition in A Hot Filament Reactor. Materials Research Society Symposia Proceedings, 1994, 349, 421.	0.1	3
192	<title>Optical detection of CH3 during diamond chemical vapor deposition</title> ., 1994, 2124, 292.		1
193	Temperature dependence of species concentrations near the substrate during diamond chemical vapor deposition. Journal of Applied Physics, 1993, 74, 2021-2029.	1.1	76
194	Diamond growth by methane injection into hydrogen-oxygen flames. Diamond and Related Materials, 1993, 2, 169-173.	1.8	3
195	Near-Surface Optical Detection of CH ₃ During Diamond Growth. Materials Research Society Symposia Proceedings, 1992, 270, 377.	0.1	1
196	An efficient highâ€repetitionâ€rate fastâ€pulsed gas valve. Review of Scientific Instruments, 1990, 61, 1068-1071.	0.6	17
197	Inhibition of formation of SF6molecular clusters in a free supersonic expansion. Journal of Applied Physics, 1988, 63, 5169-5171.	1.1	2
198	Gain measurements in stimulated rotational Raman scattering in para hydrogen. Optics Letters, 1986, 11, 368.	1.7	4

#	Article	IF	CITATIONS
199	CVD Diamond Films Growth on Silicon Nitride Inserts (Si ₃ N ₄) with High Nucleation Density by Functionalization Seeding. Materials Science Forum, 0, 727-728, 1433-1438.	0.3	10
200	On the Diffusion Profile at the Brazed Interface between Active Filler Metal and CVD Diamond Plates. Defect and Diffusion Forum, 0, 334-335, 203-206.	0.4	1
201	Adherence Study of Diamond-Like Carbon Films Deposited on X45 CrSi 9-3 Steel with a Silicon Interlayer. Materials Science Forum, 0, 802, 642-647.	0.3	0
202	Electrodeposition of Zinc Oxide on Graphene Tips Electrochemically Exfoliated and O ₂ -Plasma Treated. Advanced Materials Research, 0, 975, 179-183.	0.3	0
203	Adherence Analysis of DLC Films Grown on AISI M2 Steel Substrates as a Function of Silicon Interlayer Thickness. Materials Science Forum, 0, 802, 388-391.	0.3	4
204	Electric Double Layer Capacitor of Multiwall Carbon Nanotubes under Different Degree of Acid Oxidations. Materials Science Forum, 0, 802, 186-191.	0.3	0
205	FORMATION OF METAL NANOPARTICLES BY SPUTTER DEPOSITION ON UNCD FILMS BY NPIII INSIDE CONDUCTIVE TUBES. , 0, , 92-108.		0