Wenquan Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8622696/publications.pdf Version: 2024-02-01

Μενομάν Ζημ

#	Article	IF	CITATIONS
1	Extension of the growing season due to delayed autumn over mid and high latitudes in North America during 1982–2006. Global Ecology and Biogeography, 2012, 21, 260-271.	2.7	189
2	Modelling net primary productivity of terrestrial ecosystems in East Asia based on an improved CASA ecosystem model. International Journal of Remote Sensing, 2009, 30, 4851-4866.	1.3	111
3	Drought in the Southern United States over the 20th century: variability and its impacts on terrestrial ecosystem productivity and carbon storage. Climatic Change, 2012, 114, 379-397.	1.7	100
4	A Changing-Weight Filter Method for Reconstructing a High-Quality NDVI Time Series to Preserve the Integrity of Vegetation Phenology. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50, 1085-1094.	2.7	85
5	An automated rice mapping method based on flooding signals in synthetic aperture radar time series. Remote Sensing of Environment, 2021, 252, 112112.	4.6	65
6	Continuous but diverse advancement of spring-summer phenology in response to climate warming across the Qinghai-Tibetan Plateau. Agricultural and Forest Meteorology, 2016, 223, 194-202.	1.9	60
7	The Optimal Threshold and Vegetation Index Time Series for Retrieving Crop Phenology Based on a Modified Dynamic Threshold Method. Remote Sensing, 2019, 11, 2725.	1.8	57
8	Comprehensive analysis of the impact of climatic changes on Chinese terrestrial net primary productivity. Science Bulletin, 2007, 52, 3253-3260.	1.7	53
9	A Comparative Analysis between GIMSS NDVIg and NDVI3g for Monitoring Vegetation Activity Change in the Northern Hemisphere during 1982–2008. Remote Sensing, 2013, 5, 4031-4044.	1.8	50
10	Estimating the Seasonal Dynamics of the Leaf Area Index Using Piecewise LAI-VI Relationships Based on Phenophases. Remote Sensing, 2019, 11, 689.	1.8	46
11	Characterization of locations and extents of afforestation from the Grain for Green Project in China. Remote Sensing Letters, 2014, 5, 221-229.	0.6	42
12	Uncertainty analysis of terrestrial net primary productivity and net biome productivity in China during 1901–2005. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 1372-1393.	1.3	35
13	A Phenology-Based Method to Map Cropping Patterns under a Wheat-Maize Rotation Using Remotely Sensed Time-Series Data. Remote Sensing, 2018, 10, 1203.	1.8	32
14	An Identification Method for Spring Maize in Northeast China Based on Spectral and Phenological Features. Remote Sensing, 2018, 10, 193.	1.8	30
15	Examining the distribution and dynamics of impervious surface in different function zones in Beijing. Journal of Chinese Geography, 2018, 28, 669-684.	1.5	27
16	A comparative analysis of the spatio-temporal variation in the phenologies of two herbaceous species and associated climatic driving factors on the Tibetan Plateau. Agricultural and Forest Meteorology, 2018, 248, 177-184.	1.9	25
17	Changes in Spring Phenology in the Three-Rivers Headwater Region from 1999 to 2013. Remote Sensing, 2014, 6, 9130-9144.	1.8	23
18	Thermal growing season and response of alpine grassland to climate variability across the Three-Rivers Headwater Region, China. Agricultural and Forest Meteorology, 2016, 220, 30-37.	1.9	23

Wenquan Zhu

#	Article	IF	CITATIONS
19	Uncertainty of Remote Sensing Data in Monitoring Vegetation Phenology: A Comparison of MODIS C5 and C6 Vegetation Index Products on the Tibetan Plateau. Remote Sensing, 2017, 9, 1288.	1.8	23
20	A Shape-matching Cropping Index (CI) Mapping Method to Determine Agricultural Cropland Intensities in China using MODIS Time-series Data. Photogrammetric Engineering and Remote Sensing, 2012, 78, 829-837.	0.3	22
21	A study of the seasonal dynamics of grassland growth rates in Inner Mongolia based on AVHRR data and a lightâ€use efficiency model. International Journal of Remote Sensing, 2009, 30, 3799-3815.	1.3	17
22	The role of May vegetation greenness on the southeastern Tibetan Plateau for East Asian summer monsoon prediction. Journal of Geophysical Research, 2011, 116, .	3.3	15
23	Estimating Carbon Flux Phenology with Satellite-Derived Land Surface Phenology and Climate Drivers for Different Biomes: A Synthesis of AmeriFlux Observations. PLoS ONE, 2013, 8, e84990.	1.1	12
24	Diverse and divergent influences of phenology on herbaceous aboveground biomass across the Tibetan Plateau alpine grasslands. Ecological Indicators, 2021, 121, 107036.	2.6	11
25	Spatiotemporal variations of the start of thermal growing season for grassland on the Qinghai-Tibetan Plateau during 1961–2014. International Journal of Biometeorology, 2019, 63, 639-647.	1.3	9
26	Assessing the Effects of Time Interpolation of NDVI Composites on Phenology Trend Estimation. Remote Sensing, 2021, 13, 5018.	1.8	9
27	Phylogenetic conservatism in heat requirement of leaf-out phenology, rather than temperature sensitivity, in Tibetan Plateau. Agricultural and Forest Meteorology, 2021, 304-305, 108413.	1.9	8
28	A background-free phenology index for improved monitoring of vegetation phenology. Agricultural and Forest Meteorology, 2022, 315, 108826.	1.9	8
29	Impacts of Sulfate Geoengineering on Rice Yield in China: Results From a Multimodel Ensemble. Earth's Future, 2019, 7, 395-410.	2.4	7
30	Integration of multiple climate models to predict range shifts and identify management priorities of the endangered Taxus wallichiana in the Himalaya–Hengduan Mountain region. Journal of Forestry Research, 2020, 31, 2255-2272.	1.7	7
31	Evaluation of similarity measure methods for hyperspectral remote sensing data. , 2012, , .		6
32	Using phenological metrics and the multiple classifier fusion method to map land cover types. Journal of Applied Remote Sensing, 2014, 8, 083691.	0.6	6
33	Seasonal differences in relationships between changes in spring phenology and dynamics of carbon cycle in grasslands. Ecosphere, 2019, 10, e02733.	1.0	5
34	Cropland yield divergence over Africa and its implication for mitigating food insecurity. Mitigation and Adaptation Strategies for Global Change, 2019, 24, 707-734.	1.0	4
35	Change in the Green-Up Dates for Quercus mongolica in Northeast China and Its Climate-Driven Mechanism from 1962 to 2012. PLoS ONE, 2015, 10, e0130516.	1.1	4
36	Evaluating the Impact of Mega-Sports Events on Urbanization Focusing on Land-Use Changes Using a Scenario-Based Model. Sustainability, 2021, 13, 1649.	1.6	3

Wenquan Zhu

#	Article	IF	CITATIONS
37	Species differences in the green-up date of typical vegetation in Inner Mongolia and climate-driven mechanism based on process-based phenology models. Science of the Total Environment, 2022, 834, 155260.	3.9	3
38	Reconstruction of Vegetation Index Time Series Based on Self-Weighting Function Fitting from Curve Features. Remote Sensing, 2022, 14, 2247.	1.8	3
39	A correction technique for false topographic perception of remote-sensing images based on an inverse topographic correction technique. International Journal of Digital Earth, 2016, 9, 1021-1034.	1.6	2
40	Joint Influence Mechanism of Phenology and Climate on the Dynamics of Gross Primary Productivity: Insights From Temperate Deciduous Broadleaf Forests in North America. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2020JG006049.	1.3	2
41	Evaluation of phenology extracting methods from vegetation index time series. , 2012, , .		0
42	Phenological piecewise modelling is more conducive than whole-season modelling to winter wheat yield estimation based on remote sensing data. European Journal of Remote Sensing, 2022, 55, 338-352.	1.7	0