Margaret Tt Wong-Riley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8622391/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Changes in the visual system of monocularly sutured or enucleated cats demonstrable with cytochrome oxidase histochemistry. Brain Research, 1979, 171, 11-28.	1.1	2,045
2	Cytochrome oxidase: an endogenous metabolic marker for neuronal activity. Trends in Neurosciences, 1989, 12, 94-101.	4.2	1,382
3	Photobiomodulation Directly Benefits Primary Neurons Functionally Inactivated by Toxins. Journal of Biological Chemistry, 2005, 280, 4761-4771.	1.6	498
4	Mitochondrial signal transduction in accelerated wound and retinal healing by near-infrared light therapy. Mitochondrion, 2004, 4, 559-567.	1.6	384
5	Energy metabolism of the visual system. Eye and Brain, 2010, 2, 99.	3.8	342
6	Clinical and Experimental Applications of NIR-LED Photobiomodulation. Photomedicine and Laser Surgery, 2006, 24, 121-128.	2.1	319
7	Effect of NASA Light-Emitting Diode Irradiation on Molecular Changes for Wound Healing in Diabetic Mice. Photomedicine and Laser Surgery, 2003, 21, 67-74.	1.1	177
8	Changes in endogenous enzymatic reactivity to DAB induced by neuronal inactivity. Brain Research, 1978, 141, 185-192.	1.1	166
9	Columnar cortico-cortical interconnections within the visual system of the squirrel and macaque monkeys. Brain Research, 1979, 162, 201-217.	1.1	164
10	Endogenous peroxidatic activity in brain stem neurons as demonstrated by their staining with diaminobenzidine in normal squirrel monkeys. Brain Research, 1976, 108, 257-277.	1.1	158
11	Near-infrared light via light-emitting diode treatment is therapeutic against rotenone- and 1-methyl-4-phenylpyridinium ion-induced neurotoxicity. Neuroscience, 2008, 153, 963-974.	1.1	140
12	Nuclear Respiratory Factor 1 Regulates All Ten Nuclear-encoded Subunits of Cytochrome c Oxidase in Neurons. Journal of Biological Chemistry, 2008, 283, 3120-3129.	1.6	139
13	The effect of impulse blockage on cytochrome oxidase activity in the cat visual system. Brain Research, 1983, 261, 185-193.	1.1	126
14	Cytochrome oxidase in Alzheimer's disease: Biochemical, histochemical, and immunohistochemical analyses of the visual and other systems. Vision Research, 1997, 37, 3593-3608.	0.7	121
15	ls nuclear respiratory factor 2 a master transcriptional coordinator for all ten nuclear-encoded cytochrome c oxidase subunits in neurons?. Gene, 2005, 360, 65-77.	1.0	102
16	Neurochemical development of brain stem nuclei involved in the control of respiration. Respiratory Physiology and Neurobiology, 2005, 149, 83-98.	0.7	100
17	Pretreatment with near-infrared light via light-emitting diode provides added benefit against rotenone- and MPP+-induced neurotoxicity. Brain Research, 2008, 1243, 167-173.	1.1	100
18	Nuclear respiratory factor 2 senses changing cellular energy demands and its silencing down-regulates cytochrome oxidase and other target gene mRNAs. Gene, 2006, 374, 39-49.	1.0	94

#	Article	IF	CITATIONS
19	Reciprocal connections between striate and prestriate cortex in squirrel monkey as demonstrated by combined peroxidase histochemistry and autoradiography. Brain Research, 1978, 147, 159-164.	1.1	90
20	Demonstration of geniculocortical and callosal projection neurons in the squirrel monkey by means of retrograde axonal transport of horseradish peroxidase. Brain Research, 1974, 79, 267-272.	1.1	72
21	Developmental changes in the expression of GABAA receptor subunits α1, α2, and α3 in brain stem nuclei of rats. Brain Research, 2006, 1098, 129-138.	1.1	65
22	Neurochemical and physiological correlates of a critical period of respiratory development in the rat. Respiratory Physiology and Neurobiology, 2008, 164, 28-37.	0.7	62
23	Projections from the dorsal lateral geniculate nucleus to prestriate cortex in the squirrel monkey as demonstrated by retrograde transport of horseradish peroxidase. Brain Research, 1976, 109, 595-600.	1.1	51
24	Activity correlates of cytochrome oxidase-defined compartments in granular and supragranular layers of primary visual cortex of the macaque monkey. Visual Neuroscience, 1995, 12, 629-639.	0.5	50
25	Neurochemical organization of the macaque retina: effect of TTX on levels and gene expression of cytochrome oxidase and nitric oxide synthase and on the immunoreactivity of Na+K+ATPase and NMDA receptor subunit I. Vision Research, 1998, 38, 1455-1477.	0.7	49
26	Laminar and cellular localization of cytochrome oxidase in the cat striate cortex. Journal of Comparative Neurology, 1986, 245, 137-159.	0.9	47
27	An analysis of the cellular localization of cytochrome oxidase in the lateral geniculate nucleus of the adult cat. Journal of Comparative Neurology, 1985, 242, 338-357.	0.9	45
28	Peripheral–central chemoreceptor interaction and the significance of a critical period in the development of respiratory control. Respiratory Physiology and Neurobiology, 2013, 185, 156-169.	0.7	44
29	Postnatal changes in tryptophan hydroxylase and serotonin transporter immunoreactivity in multiple brainstem nuclei of the rat: Implications for a sensitive period. Journal of Comparative Neurology, 2010, 518, 1082-1097.	0.9	43
30	Bigenomic functional regulation of all 13 cytochrome c oxidase subunit transcripts in rat neurons in vitro and in vivo. Neuroscience, 2006, 140, 177-190.	1.1	40
31	Differential glutamatergic innervation in cytochrome oxidase-rich and -poor regions of the macaque striate cortex: Quantitative EM analysis of neurons and neuropil. , 1996, 369, 571-590.		39
32	Effects of monocular enucleation, tetrodotoxin, and lid suture on cytochrome-oxidase reactivity in supragranular puffs of adult macaque striate cortex. Visual Neuroscience, 1990, 4, 185-204.	0.5	37
33	The kinesin superfamily protein KIF17: one protein with many functions. Biomolecular Concepts, 2012, 3, 267-282.	1.0	37
34	Connections between the pulvinar nucleus and the prestriate cortex in the squirrel monkey as revealed by peroxidase histochemistry and autoradiography. Brain Research, 1977, 134, 249-267.	1.1	36
35	The localization of cytochrome oxidase in the LGN and striate cortex of postnatal kittens. Journal of Comparative Neurology, 1986, 243, 182-194.	0.9	35
36	Decreased rat brain cytochrome oxidase activity after prolonged hypoxia. Brain Research, 1996, 720, 1-6.	1.1	35

MARGARET TT WONG-RILEY

#	Article	IF	CITATIONS
37	Do nitric oxide synthase, NMDA receptor subunit R1 and cytochrome oxidase co-localize in the rat central nervous system?. Brain Research, 1996, 729, 205-215.	1.1	34
38	An optimized method for determining cytochrome oxidase activity in brain tissue homogenates. Journal of Neuroscience Methods, 1993, 50, 309-319.	1.3	31
39	Activity-dependent transcriptional regulation of nuclear respiratory factor-1 in cultured rat visual cortical neurons. Neuroscience, 2006, 141, 1181-1192.	1.1	31
40	Activity-dependent regulation of nuclear respiratory factor-1, nuclear respiratory factor-2, and peroxisome proliferator-activated receptor gamma coactivator-1 in neurons. NeuroReport, 2006, 17, 401-405.	0.6	31
41	Chromosome Conformation Capture of All 13 Genomic Loci in the Transcriptional Regulation of the Multisubunit Bigenomic Cytochrome c Oxidase in Neurons. Journal of Biological Chemistry, 2009, 284, 18644-18650.	1.6	31
42	Postnatal development of glycine receptor subunits α1, α2, α3, and β immunoreactivity in multiple brain stem respiratory-related nuclear groups of the rat. Brain Research, 2013, 1538, 1-16.	1.1	31
43	Expression and regulation of NMDA receptor subunit R1 and neuronal nitric oxide synthase in cortical neuronal cultures: correlation with cytochrome oxidase. , 1999, 28, 525-539.		29
44	AMPA glutamate receptor subunit 2 in normal and visually deprived macaque visual cortex. Visual Neuroscience, 2002, 19, 563-573.	0.5	29
45	Transcriptional coupling of synaptic transmission and energy metabolism: Role of nuclear respiratory factor 1 in co-regulating neuronal nitric oxide synthase and cytochrome c oxidase genes in neurons. Biochimica Et Biophysica Acta - Molecular Cell Research, 2009, 1793, 1604-1613.	1.9	28
46	Differential effect of visual deprivation on cytochrome oxidase levels in major cell classes of the cat LGN. Journal of Comparative Neurology, 1986, 246, 212-237.	0.9	27
47	Metabolic and neurochemical plasticity of ?-aminobutyric acid-immunoreactive neurons in the adult macaque striate cortex following monocular impulse blockade: Quantitative electron microscopic analysis. , 1996, 370, 350-366.		27
48	Regulation of <scp>N</scp> a ⁺ / <scp>K</scp> ⁺ â€ <scp>ATP</scp> ase by neuronâ€specific transcription factor <scp>S</scp> p4: implication in the tight coupling of energy production, neuronal activity and energy consumption in neurons. European Journal of Neuroscience, 2014, 39, 566-578.	1.2	27
49	Quantitative light- and electron-microscopic analysis of cytochrome-oxidase distribution in neurons of the lateral geniculate nucleus of the adult monkey. Visual Neuroscience, 1990, 4, 269-287.	0.5	26
50	Mitochondrial- and nuclear-encoded subunits of cytochrome oxidase in neurons: Differences in compartmental distribution, correlation with enzyme activity, and regulation by neuronal activity. , 1996, 373, 139-155.		26
51	Mechanisms underlying a critical period of respiratory development in the rat. Respiratory Physiology and Neurobiology, 2019, 264, 40-50.	0.7	26
52	Effects of hindlimb unloading on neuromuscular development of neonatal rats. Developmental Brain Research, 2000, 119, 169-178.	2.1	25
53	Human COX6A1 gene: promoter analysis, cDNA isolation and expression in the monkey brain. Gene, 2000, 247, 63-75.	1.0	25
54	Neuronal activity regulates protein and gene expressions of CluR2 in postnatal rat visual cortical neurons in culture. Journal of Neurocytology, 2003, 32, 71-78.	1.6	25

#	Article	IF	CITATIONS
55	Object recognition test for studying cognitive impairments in animal models of Alzheimer s disease. Frontiers in Bioscience - Scholar, 2015, 7, 10-29.	0.8	25
56	Functional analysis of the rat cytochrome c oxidase subunit 6A1 promoter in primary neurons. Gene, 2004, 337, 163-171.	1.0	24
57	Specificity protein 4 functionally regulates the transcription of NMDA receptor subunits GluN1, GluN2A, and GluN2B. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 2745-2756.	1.9	24
58	Nuclear respiratory factor-2 subunit protein: Correlation with cytochrome oxydase and regulation by functional activity in the monkey primary visual cortex. , 1999, 404, 310-320.		23
59	Quantitative immuno-electron microscopic analysis of depolarization-induced expression of PGC-1α in cultured rat visual cortical neurons. Brain Research, 2007, 1175, 10-16.	1.1	23
60	Postnatal development of brainâ€derived neurotrophic factor (BDNF) and tyrosine protein kinase B (TrkB) receptor immunoreactivity in multiple brain stem respiratoryâ€related nuclei of the rat. Journal of Comparative Neurology, 2013, 521, 109-129.	0.9	23
61	Neuronâ€specific specificity protein 4 bigenomically regulates the transcription of all mitochondria― and nucleusâ€encoded cytochrome <i>c</i> oxidase subunit genes in neurons. Journal of Neurochemistry, 2013, 127, 496-508.	2.1	23
62	p38 mitogenâ€activated protein kinase and calcium channels mediate signaling in depolarizationâ€induced activation of peroxisome proliferatorâ€activated receptor gamma coactivatorâ€1α in neurons. Journal of Neuroscience Research, 2010, 88, 640-649.	1.3	21
63	Regulation of Na+/K+-ATPase by Nuclear Respiratory Factor 1. Journal of Biological Chemistry, 2012, 287, 40381-40390.	1.6	21
64	Synthesis and degradation of cytochrome oxidase subunit mRNAs in neurons: Differential bigenomic regulation by neuronal activity. , 2000, 60, 338-344.		20
65	Double-labeling of rat α-motoneurons for cytochrome oxidase and retrogradely transported [3H]WGA. Brain Research, 1986, 368, 178-182.	1.1	19
66	Deafferentation leads to a down-regulation of nitric oxide synthase in the rat visual system. Neuroscience Letters, 1996, 211, 61-64.	1.0	19
67	The kinesin superfamily protein KIF17 is regulated by the same transcription factor (NRF-1) as its cargo NR2B in neurons. Biochimica Et Biophysica Acta - Molecular Cell Research, 2011, 1813, 403-411.	1.9	19
68	5-HT induces enhanced phrenic nerve activity via 5-HT2A receptor/PKC mechanism in anesthetized rats. European Journal of Pharmacology, 2011, 657, 67-75.	1.7	18
69	Nuclear respiratory factor 2 regulates the expression of the same NMDA receptor subunit genes as NRF-1: Both factors act by a concurrent and parallel mechanism to couple energy metabolism and synaptic transmission. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 48-58.	1.9	18
70	Specificity protein 4 (Sp4) regulates the transcription of AMPA receptor subunit GluA2 (Gria2). Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 1196-1206.	1.9	18
71	Transcriptional Regulation of Brain-derived Neurotrophic Factor Coding Exon IX. Journal of Biological Chemistry, 2016, 291, 22583-22593.	1.6	18
72	Human nuclear respiratory factor 2? subunit cDNA: Isolation, subcloning, sequencing, and in situ hybridization of transcripts in normal and monocularly deprived macaque visual system. , 2000, 417, 221-232		17

#	Article	IF	CITATIONS
73	Photobiomodulation for the Treatment of Retinal Injury and Retinal Degenerative Diseases. Lecture Notes in Electrical Engineering, 2008, , 39-51.	0.3	17
74	Uncovering a critical period of synaptic imbalance during postnatal development of the rat visual cortex: role of brainâ€derived neurotrophic factor. Journal of Physiology, 2018, 596, 4511-4536.	1.3	16
75	Quantitative immuno-electron microscopic analysis of nuclear respiratory factor 2 alpha and beta subunits: Normal distribution and activity-dependent regulation in mammalian visual cortex. Visual Neuroscience, 2005, 22, 1-18.	0.5	15
76	Reduced levels of brainâ€derived neurotrophic factor contribute to synaptic imbalance during the critical period of respiratory development in rats. European Journal of Neuroscience, 2014, 40, 2183-2195.	1.2	14
77	Specificity protein 4 (Sp4) transcriptionally regulates inhibitory GABAergic receptors in neurons. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 1-9.	1.9	12
78	Effects of neonatal hyperoxia on the critical period of postnatal development of neurochemical expressions in brain stem respiratory-related nuclei in the rat. Physiological Reports, 2018, 6, e13627.	0.7	12
79	Harnessing the cell's own ability to repair and prevent neurodegenerative disease. SPIE Newsroom, 2008, 2008, 1-3.	0.1	11
80	Pituitary adenylate cyclase-activating polypeptide: Postnatal development in multiple brain stem respiratory-related nuclei in the rat. Respiratory Physiology and Neurobiology, 2019, 259, 149-155.	0.7	10
81	A group of neurokinin-1 receptor-immunoreactive neurons expressing phospho-extracellular signal-regulated protein kinases in the pre-Bötzinger complex of rats. Journal of Neuroscience Research, 2005, 80, 260-267.	1.3	9
82	Nuclear respiratory factor 2 regulates the transcription of AMPA receptor subunit GluA2 (Gria2). Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 3018-3028.	1.9	9
83	The critical period: neurochemical and synaptic mechanisms shared by the visual cortex and the brain stem respiratory system. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20211025.	1.2	9
84	Gender considerations in ventilatory and metabolic development in rats: Special emphasis on the critical period. Respiratory Physiology and Neurobiology, 2013, 188, 200-207.	0.7	8
85	Role of brain-derived neurotrophic factor in the excitatory-inhibitory imbalance during the critical period of postnatal respiratory development in the rat. Physiological Reports, 2015, 3, e12631.	0.7	8
86	What is the Meaning of the ATP Surge During Sleep?. Sleep, 2011, 34, 833-834.	0.6	7
87	Differential gene expressions in the visual cortex of postnatal day 1 versus day 21 rats revealed by suppression subtractive hybridization. Gene, 2004, 329, 93-101.	1.0	5
88	Activity-Dependent Bigenomic Transcriptional Regulation of Cytochrome c Oxidase in Neurons. , 0, , 209-228.		2
89	Photobiomodulation of cultured primary neurons: role of cytochrome c oxidase. , 2019, , 21-34.		1

#	Article	IF	CITATIONS
91	Chapter 11 Cytoprotective Effect of Low-Level Light Therapy using LEDs on Neurons. , 2016, , 185-206.		0