
J Andrew Alspaugh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8621845/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	<i>Cryptococcus neoformans</i> mating and virulence are regulated by the G-protein α subunit GPA1 and cAMP. Genes and Development, 1997, 11, 3206-3217.	2.7	385
2	Cyclic AMP-Dependent Protein Kinase Controls Virulence of the Fungal Pathogen Cryptococcus neoformans. Molecular and Cellular Biology, 2001, 21, 3179-3191.	1.1	310
3	The Cryptococcus neoformans Capsule: a Sword and a Shield. Clinical Microbiology Reviews, 2012, 25, 387-408.	5.7	291
4	RAS1 regulates filamentation, mating and growth at high temperature of Cryptococcus neoformans. Molecular Microbiology, 2000, 36, 352-365.	1.2	211
5	Adenylyl Cyclase Functions Downstream of the Gα Protein Gpa1 and Controls Mating and Pathogenicity of Cryptococcus neoformans. Eukaryotic Cell, 2002, 1, 75-84.	3.4	196
6	Inhibition of Cryptococcus neoformans replication by nitrogen oxides supports the role of these molecules as effectors of macrophage-mediated cytostasis. Infection and Immunity, 1991, 59, 2291-2296.	1.0	191
7	Gene Disruption by Biolistic Transformation in Serotype D Strains of Cryptococcus neoformans. Fungal Genetics and Biology, 2000, 29, 38-48.	0.9	175
8	Interaction of Cryptococcus neoformans Rim101 and Protein Kinase A Regulates Capsule. PLoS Pathogens, 2010, 6, e1000776.	2.1	172
9	Transcriptional Network of Multiple Capsule and Melanin Genes Governed by the Cryptococcus neoformans Cyclic AMP Cascade. Eukaryotic Cell, 2005, 4, 190-201.	3.4	159
10	The STE12α Homolog Is Required for Haploid Filamentation But Largely Dispensable for Mating and Virulence in Cryptococcus neoformans. Genetics, 1999, 153, 1601-1615.	1.2	138
11	Differential Effects of Inhibiting Chitin and 1,3-β- <scp>d</scp> -Glucan Synthesis in Ras and Calcineurin Mutants of <i>Aspergillus fumigatus</i> . Antimicrobial Agents and Chemotherapy, 2009, 53, 476-482.	1.4	132
12	New Horizons in Antifungal Therapy. Journal of Fungi (Basel, Switzerland), 2016, 2, 26.	1.5	131
13	Cryptococcus neoformans Rim101 Is Associated with Cell Wall Remodeling and Evasion of the Host Immune Responses. MBio, 2013, 4, .	1.8	107
14	Virulence mechanisms and Cryptococcus neoformans pathogenesis. Fungal Genetics and Biology, 2015, 78, 55-58.	0.9	106
15	Cryptococcal Titan Cell Formation Is Regulated by G-Protein Signaling in Response to Multiple Stimuli. Eukaryotic Cell, 2011, 10, 1306-1316.	3.4	105
16	Signal Transduction Pathways Regulating Differentiation and Pathogenicity ofCryptococcus neoformans. Fungal Genetics and Biology, 1998, 25, 1-14.	0.9	96
17	Ras1 and Ras2 contribute shared and unique roles in physiology and virulence of Cryptococcus neoformans The GenBank accession number for the RAS2 sequence of C. neoformans H99 is AF294349 Microbiology (United Kingdom), 2002, 148, 191-201.	0.7	96
18	Chromosomal Translocation and Segmental Duplication in Cryptococcus neoformans. Eukaryotic Cell. 2005. 4. 401-406.	3.4	94

#	Article	IF	CITATIONS
19	Transcription Factor Nrg1 Mediates Capsule Formation, Stress Response, and Pathogenesis in Cryptococcus neoformans. Eukaryotic Cell, 2006, 5, 1147-1156.	3.4	94
20	pH Response Pathways in Fungi: Adapting to Host-derived and Environmental Signals. Mycobiology, 2011, 39, 249-256.	0.6	94
21	The Cryptococcus neoformans Catalase Gene Family and ItsRole in Antioxidant Defense. Eukaryotic Cell, 2006, 5, 1447-1459.	3.4	85
22	On the Origins of Congenic MATα and MATa Strains of the Pathogenic Yeast Cryptococcus neoformans. Fungal Genetics and Biology, 1999, 28, 1-5.	0.9	84
23	A Ras1 dc24 signal transduction pathway mediates thermotolerance in the fungal pathogen Cryptococcus neoformans. Molecular Microbiology, 2007, 63, 1118-1130.	1.2	83
24	The Cryptococcus neoformans Alkaline Response Pathway: Identification of a Novel Rim Pathway Activator. PLoS Genetics, 2015, 11, e1005159.	1.5	80
25	Cryptococcus neoformans Histone Acetyltransferase Gcn5 Regulates Fungal Adaptation to the Host. Eukaryotic Cell, 2010, 9, 1193-1202.	3.4	78
26	The <i>Cryptococcus neoformans</i> Rim101 Transcription Factor Directly Regulates Genes Required for Adaptation to the Host. Molecular and Cellular Biology, 2014, 34, 673-684.	1.1	73
27	Role of Protein O-Mannosyltransferase Pmt4 in the Morphogenesis and Virulence of Cryptococcus neoformans. Eukaryotic Cell, 2007, 6, 222-234.	3.4	70
28	Molecular and genetic analysis of the Cryptococcus neoformans MET3 gene and a met3 mutant a aThe GenBank accession numbers for the sequences reported in this paper are AY035556 and AF489498 Microbiology (United Kingdom), 2002, 148, 2617-2625.	0.7	63
29	A Rac Homolog Functions Downstream of Ras1 To Control Hyphal Differentiation and High-Temperature Growth in the Pathogenic Fungus Cryptococcus neoformans. Eukaryotic Cell, 2005, 4, 1066-1078.	3.4	60
30	Subcellular Localization Directs Signaling Specificity of the <i>Cryptococcus neoformans</i> Ras1 Protein. Eukaryotic Cell, 2009, 8, 181-189.	3.4	59
31	Non-comparative evaluation of the safety of aerosolized amphotericin B lipid complex in patients undergoing allogeneic hematopoietic stem cell transplantation. Transplant Infectious Disease, 2006, 8, 13-20.	0.7	56
32	HDAC genes play distinct and redundant roles in Cryptococcus neoformans virulence. Scientific Reports, 2018, 8, 5209.	1.6	56
33	Morphogenesis of <i>Cryptococcus neoformans</i> . , 2000, 5, 217-238.		52
34	Pedicure-Associated Rapidly Growing Mycobacterial Infection: An Endemic Disease. Clinical Infectious Diseases, 2011, 53, 787-792.	2.9	51
35	The RAM1 gene encoding a protein-farnesyltransferase β-subunit homologue is essential in Cryptococcus neoformans. Microbiology (United Kingdom), 2004, 150, 1925-1935.	0.7	48
36	Structures of Cryptococcus neoformans Protein Farnesyltransferase Reveal Strategies for Developing Inhibitors That Target Fungal Pathogens. Journal of Biological Chemistry, 2011, 286, 35149-35162.	1.6	48

#	Article	IF	CITATIONS
37	The <i>Cryptococcus neoformans</i> Rho-GDP Dissociation Inhibitor Mediates Intracellular Survival and Virulence. Infection and Immunity, 2008, 76, 5729-5737.	1.0	47
38	Molecular characterization of TRP1, a gene coding for tryptophan synthetase in the basidiomycete Coprinus cinereus. Gene, 1989, 81, 73-82.	1.0	46
39	Fungal Morphogenesis. Cold Spring Harbor Perspectives in Medicine, 2015, 5, a019679-a019679.	2.9	45
40	Two <i>CDC42</i> paralogues modulate <i>Cryptococcus neoformans</i> thermotolerance and morphogenesis under host physiological conditions. Molecular Microbiology, 2010, 75, 763-780.	1.2	44
41	Defects in intracellular trafficking of fungal cell wall synthases lead to aberrant host immune recognition. PLoS Pathogens, 2018, 14, e1007126.	2.1	44
42	Rim Pathway-Mediated Alterations in the Fungal Cell Wall Influence Immune Recognition and Inflammation. MBio, 2017, 8, .	1.8	42
43	Characterization of the PMT Gene Family in Cryptococcus neoformans. PLoS ONE, 2009, 4, e6321.	1.1	42
44	Molecular Analysis of the Cryptococcus neoformans ADE2 Gene, a Selectable Marker for Transformation and Gene Disruption. Fungal Genetics and Biology, 1999, 27, 36-48.	0.9	40
45	Ras1 controls pheromone expression and response during mating in Cryptococcus neoformans. Fungal Genetics and Biology, 2003, 38, 110-121.	0.9	40
46	Cyclic AMP signaling in. FEMS Yeast Research, 2004, 4, 361-367.	1.1	40
47	Mycoplasma hominis Pneumonia Complicating Bilateral Lung Transplantation. Chest, 1997, 112, 1428-1432.	0.4	39
48	Prosthetic Joint Infection Due to <i>Histoplasma capsulatum</i> : Case Report and Review. Clinical Infectious Diseases, 1998, 26, 1017-1017.	2.9	37
49	Ras1 Acts through Duplicated Cdc42 and Rac Proteins to Regulate Morphogenesis and Pathogenesis in the Human Fungal Pathogen Cryptococcus neoformans. PLoS Genetics, 2013, 9, e1003687.	1.5	33
50	Transposon mobilization in the human fungal pathogen <i>Cryptococcus</i> is mutagenic during infection and promotes drug resistance in vitro. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 9973-9980.	3.3	32
51	Chitin: A "Hidden Figure―in the Fungal Cell Wall. Current Topics in Microbiology and Immunology, 2019, 425, 83-111.	0.7	30
52	Roles for Stress Response and Cell Wall Biosynthesis Pathways in Caspofungin Tolerance in <i>Cryptococcus neoformans</i> . Genetics, 2019, 213, 213-227.	1.2	29
53	Erg6 affects membrane composition and virulence of the human fungal pathogen Cryptococcus neoformans. Fungal Genetics and Biology, 2020, 140, 103368.	0.9	28
54	Relative Contributions of Prenylation and Postprenylation Processing in Cryptococcus neoformans Pathogenesis. MSphere, 2016, 1, .	1.3	25

#	Article	IF	CITATIONS
55	Two Rac paralogs regulate polarized growth in the human fungal pathogen Cryptococcus neoformans. Fungal Genetics and Biology, 2013, 57, 58-75.	0.9	24
56	The role of the de novo pyrimidine biosynthetic pathway in Cryptococcus neoformans high temperature growth and virulence. Fungal Genetics and Biology, 2014, 70, 12-23.	0.9	23
57	The role of Aspartyl aminopeptidase (Ape4) in Cryptococcus neoformans virulence and authophagy. PLoS ONE, 2017, 12, e0177461.	1.1	23
58	Rapid mapping of insertional mutations to probe cell wall regulation in Cryptococcus neoformans. Fungal Genetics and Biology, 2015, 82, 9-21.	0.9	21
59	Sterol-Response Pathways Mediate Alkaline Survival in Diverse Fungi. MBio, 2020, 11, .	1.8	21
60	Heterothallic mating inMucor irregularisand first isolate of the species outside of Asia. Medical Mycology, 2011, 49, 1-9.	0.3	20
61	Wsp1 Is Downstream of Cin1 and Regulates Vesicle Transport and Actin Cytoskeleton as an Effector of Cdc42 and Rac1 in Cryptococcus neoformans. Eukaryotic Cell, 2012, 11, 471-481.	3.4	18
62	Impact of Protein Palmitoylation on the Virulence Potential of Cryptococcus neoformans. Eukaryotic Cell, 2015, 14, 626-635.	3.4	18
63	Identifying a novel connection between the fungal plasma membrane and pHâ€sensing. Molecular Microbiology, 2018, 109, 474-493.	1.2	18
64	Restricted Substrate Specificity for the Geranylgeranyltransferase-I Enzyme in Cryptococcus neoformans: Implications for Virulence. Eukaryotic Cell, 2013, 12, 1462-1471.	3.4	16
65	A Multi-Institution Collaboration to Define Core Content and Design Flexible Curricular Components for a Foundational Medical School Course. Academic Medicine, 2019, 94, 819-825.	0.8	16
66	Human IgM Inhibits the Formation of Titan-Like Cells in Cryptococcus neoformans. Infection and Immunity, 2020, 88, .	1.0	16
67	Identification of cyclosporin C from Amphichorda felina using a Cryptococcus neoformans differential temperature sensitivity assay. Applied Microbiology and Biotechnology, 2018, 102, 2337-2350.	1.7	15
68	Characterization of additional components of the environmental pH-sensing complex in the pathogenic fungus Cryptococcus neoformans. Journal of Biological Chemistry, 2018, 293, 9995-10008.	1.6	15
69	Length Specificity and Polymerization Mechanism of (1,3)-β- <scp>d</scp> -Glucan Synthase in Fungal Cell Wall Biosynthesis. Biochemistry, 2020, 59, 682-693.	1.2	15
70	Sphaerostilbellins, New Antimicrobial Aminolipopeptide Peptaibiotics from Sphaerostilbella toxica. Biomolecules, 2020, 10, 1371.	1.8	8
71	A Fungal Arrestin Protein Contributes to Cell Cycle Progression and Pathogenesis. MBio, 2019, 10, .	1.8	7
72	Anti-cryptococcal activity of preussolides A and B, phosphoethanolamine-substituted 24-membered macrolides, and leptosin C from coprophilous isolates of Preussia typharum. Journal of Industrial Microbiology and Biotechnology, 2021, , .	1.4	7

1

#	Article	IF	CITATIONS
73	Campafungins: Inhibitors of <i>Candida albicans</i> and <i>Cryptococcus neoformans</i> Hyphal Growth. Journal of Natural Products, 2020, 83, 2718-2726.	1.5	6
74	Comparative analysis of RNA enrichment methods for preparation of <i>Cryptococcus neoformans</i> RNA sequencing libraries. G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	6
75	An auxotrophic pigmented Cryptococcus neoformans strain causing infection of the bone marrow. Medical Mycology, 2002, 40, 1-5.	0.3	6
76	Hostile takeover: fungal protein promotes host cell invasion. Journal of Clinical Investigation, 2014, 124, 74-76.	3.9	6
77	Interactions between copper homeostasis and the fungal cell wall affect copper stress resistance. PLoS Pathogens, 2022, 18, e1010195.	2.1	6
78	Wortmannin and Wortmannine Analogues from an UndescribedNiessliasp Journal of Natural Products, 2019, 82, 532-538.	1.5	5
79	Disseminated Adenovirus Infection After Combined Liver-Kidney Transplantation. Frontiers in Cellular and Infection Microbiology, 2018, 8, 408.	1.8	5
80	Identification of the Antifungal Metabolite Chaetoglobosin P From Discosia rubi Using a Cryptococcus neoformans Inhibition Assay: Insights Into Mode of Action and Biosynthesis. Frontiers in Microbiology, 2020, 11, 1766.	1.5	4
81	An Immunogenic and Slow-Growing Cryptococcal Strain Induces a Chronic Granulomatous Infection in Murine Lungs. Infection and Immunity, 2022, 90, e0058021.	1.0	4
82	Infections Due to Zygomycetes and Other Rare Fungal Opportunists. Seminars in Respiratory and Critical Care Medicine, 1997, 18, 265-279.	0.8	3
83	Unveiling Protein Kinase A Targets in Cryptococcus neoformans Capsule Formation. MBio, 2016, 7, e00021-16.	1.8	3
84	A Wor1-Like Transcription Factor Is Essential for Virulence of Cryptococcus neoformans. Frontiers in Cellular and Infection Microbiology, 2018, 8, 369.	1.8	3
85	Discovery of Ibomycin, a Potent Antifungal Weapon. Cell Chemical Biology, 2016, 23, 1321-1322.	2.5	2
86	Transcriptional Profiles Elucidate Differential Host Responses to Infection with Cryptococcus neoformans and Cryptococcus gattii. Journal of Fungi (Basel, Switzerland), 2022, 8, 430.	1.5	2
87	Morphogenesis of Cryptococcus neoformans. Topics in Current Genetics, 2012, , 197-223.	0.7	1
88	Targeting protein localization for anti-infective therapy. Virulence, 2017, 8, 1105-1107.	1.8	1
89	New Spins on Old Drugs: Enhancing Activity of Antifungals. Cell Chemical Biology, 2020, 27, 255-256.	2.5	1

90 G-Protein Signaling Pathways: Regulating Morphogenesis and Virulence of Cryptococcus. , 0, , 151-165.

#	Article	IF	CITATIONS
91	1115. A Longitudinal Medical Education Program for Infectious Diseases Fellows. Open Forum Infectious Diseases, 2020, 7, S588-S588.	0.4	0