Mojtaba Bagherzadeh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8621725/publications.pdf

Version: 2024-02-01

71102 69250 7,496 159 41 77 citations h-index g-index papers 160 160 160 9651 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life-Years for 29 Cancer Groups, 1990 to 2017. JAMA Oncology, 2019, 5, 1749.	7.1	1,691
2	Stimulus-responsive polymeric nanogels as smart drug delivery systems. Acta Biomaterialia, 2019, 92, 1-18.	8.3	255
3	The global burden of childhood and adolescent cancer in 2017: an analysis of the Global Burden of Disease Study 2017. Lancet Oncology, The, 2019, 20, 1211-1225.	10.7	199
4	Cycloaddition of CO2 to epoxides catalyzed by imidazolium-based polymeric ionic liquids. Green Chemistry, 2013, 15, 1584.	9.0	169
5	Carbon Nanotubes: Smart Drug/Gene Delivery Carriers. International Journal of Nanomedicine, 2021, Volume 16, 1681-1706.	6.7	168
6	Mapping 123 million neonatal, infant and child deaths between 2000 and 2017. Nature, 2019, 574, 353-358.	27.8	161
7	Recent advances in porphyrin-based nanocomposites for effective targeted imaging and therapy. Biomaterials, 2020, 232, 119707.	11.4	138
8	Stimulus-responsive sequential release systems for drug and gene delivery. Nano Today, 2020, 34, 100914.	11.9	125
9	Reactivity studies of biomimetic catalytic epoxidation of alkenes with tetrabutylammonium periodate in the presence of various manganese porphyrins and nitrogen donors: significant axial ligand π-bonding effects. New Journal of Chemistry, 2004, 28, 740-747.	2.8	116
10	Oxido-peroxido molybdenum(VI) complexes in catalytic and stoichiometric oxidations. Coordination Chemistry Reviews, 2013, 257, 1093-1121.	18.8	116
11	Synthesis, X-ray structure and oxidation catalysis of a oxido–peroxido molybdenum(VI) complex with a tridentate Schiff base ligand. Inorganic Chemistry Communication, 2012, 20, 86-89.	3.9	109
12	Point-of-Use Rapid Detection of SARS-CoV-2: Nanotechnology-Enabled Solutions for the COVID-19 Pandemic. International Journal of Molecular Sciences, 2020, 21, 5126.	4.1	105
13	Epidemiology of injuries from fire, heat and hot substances: global, regional and national morbidity and mortality estimates from the Global Burden of Disease 2017 study. Injury Prevention, 2020, 26, i36-i45.	2.4	93
14	Monomeric and dimeric oxido–peroxido tungsten(VI) complexes in catalytic and stoichiometric epoxidation. Coordination Chemistry Reviews, 2014, 268, 83-100.	18.8	81
15	<p>Biodegradable Nanopolymers in Cardiac Tissue Engineering: From Concept Towards Nanomedicine</p> . International Journal of Nanomedicine, 2020, Volume 15, 4205-4224.	6.7	80
16	Polymer-Coated NH ₂ -UiO-66 for the Codelivery of DOX/pCRISPR. ACS Applied Materials & Lorentz &	8.0	80
17	<p>Biosynthesis of Copper Oxide Nanoparticles with Potential Biomedical Applications</p> . International Journal of Nanomedicine, 2020, Volume 15, 3983-3999.	6.7	79
18	Catalytic performance of Mn3O4 and Co3O4 nanocrystals prepared by sonochemical method in epoxidation of styrene and cyclooctene. Applied Surface Science, 2010, 256, 6678-6682.	6.1	78

#	Article	IF	Citations
19	Natural Polymers Decorated MOF-MXene Nanocarriers for Co-delivery of Doxorubicin/pCRISPR. ACS Applied Bio Materials, 2021, 4, 5106-5121.	4.6	78
20	<p>Burgeoning Polymer Nano Blends for Improved Controlled Drug Release: A Review</p> . International Journal of Nanomedicine, 2020, Volume 15, 4363-4392.	6.7	76
21	Synthesis, crystal structure and catalytic activity of a novel Mo(VI)–oxazoline complex in highly efficient oxidation of sulfides to sulfoxides by urea hydrogen peroxide. Inorganica Chimica Acta, 2008, 361, 2019-2024.	2.4	72
22	Quantum dots for photocatalysis: synthesis and environmental applications. Green Chemistry, 2021, 23, 4931-4954.	9.0	72
23	Synthesis, characterization and crystal structure of a dioxomolybdenum(VI) complex with a N,O type bidentate Schiff base ligand as a catalyst for homogeneous oxidation of olefins. Polyhedron, 2009, 28, 2517-2521.	2.2	69
24	An environmentally friendly wound dressing based on a self-healing, extensible and compressible antibacterial hydrogel. Green Chemistry, 2021, 23, 1312-1329.	9.0	69
25	Epidemiology of facial fractures: incidence, prevalence and years lived with disability estimates from the Global Burden of Disease 2017 study. Injury Prevention, 2020, 26, i27-i35.	2.4	67
26	Polymeric Nanoparticles for Nasal Drug Delivery to the Brain: Relevance to Alzheimer's Disease. Advanced Therapeutics, 2021, 4, 2000076.	3.2	61
27	Palladium and copper complexes with oxygen–nitrogen mixed donors as efficient catalysts for the Heck reaction. Inorganica Chimica Acta, 2012, 383, 46-51.	2.4	59
28	Dioxo and oxo-peroxo molybdenum(VI) complexes bearing salicylidene 2-picoloyl hydrazone: Structures and catalytic performances. Polyhedron, 2013, 53, 223-229.	2.2	59
29	Magnetic and microwave absorption properties of Cu/Zr doped M-type Ba/Sr hexaferrites prepared via sol-gel auto-combustion method. Journal of Alloys and Compounds, 2019, 773, 1187-1194.	5.5	58
30	Turning Toxic Nanomaterials into a Safe and Bioactive Nanocarrier for Co-delivery of DOX/pCRISPR. ACS Applied Bio Materials, 2021, 4, 5336-5351.	4.6	57
31	Oxidation of 1,4-dihydropyridines under mild and heterogeneous conditions using solid acids. Journal of the Iranian Chemical Society, 2006, 3, 73-80.	2.2	55
32	cis-Dioxo-molybdenum(VI)-oxazoline complex catalyzed epoxidation of olefins by tert-butyl hydrogen peroxide. Inorganica Chimica Acta, 2009, 362, 3698-3702.	2.4	55
33	Carbosilane dendrimers: Drug and gene delivery applications. Journal of Drug Delivery Science and Technology, 2020, 59, 101879.	3.0	52
34	Molybdenum oxo–peroxo complex: A very fast catalyst for oxidation and reduction of sulfur-based compounds. Catalysis Communications, 2012, 23, 14-19.	3.3	51
35	Nanomaterials for photothermal and photodynamic cancer therapy. Applied Physics Reviews, 2022, 9, .	11.3	50
36	Green CoNi2S4/porphyrin decorated carbon-based nanocomposites for genetic materials detection. Journal of Bioresources and Bioproducts, 2021, 6, 215-222.	20.5	46

#	Article	IF	CITATIONS
37	Immobilization of dioxomolybdenum(VI) complex bearing salicylidene 2-picoloyl hydrazone on chloropropyl functionalized SBA-15: A highly active, selective and reusable catalyst in olefin epoxidation. Applied Catalysis A: General, 2014, 475, 55-62.	4.3	45
38	A new SnS 2 -BiFeO 3 /reduced graphene oxide photocatalyst with superior photocatalytic capability under visible light irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 359, 11-22.	3.9	45
39	Multifunctional 3D Hierarchical Bioactive Green Carbon-Based Nanocomposites. ACS Sustainable Chemistry and Engineering, 2021, 9, 8706-8720.	6.7	43
40	Pd(OAc)2 without added ligand as an active catalyst for Mizoroki–Heck reaction in aqueous media. RSC Advances, 2012, 2, 12091.	3.6	42
41	Nanoparticle supported, magnetically separable vanadium complex as catalyst for selective oxidation of sulfides. Journal of Coordination Chemistry, 2012, 65, 591-601.	2.2	41
42	COVID-19 and picotechnology: Potential opportunities. Medical Hypotheses, 2020, 144, 109917.	1.5	41
43	Nanoparticle supported, magnetically separable manganese porphyrin as an efficient retrievable nanocatalyst in hydrocarbon oxidation reactions. RSC Advances, 2016, 6, 41551-41560.	3.6	40
44	Catalytic oxidation of sulfides to sulfoxide using manganese(III) complexes with bidentate O,N-donor oxazoline ligand and UHP oxidizing agent. Catalysis Communications, 2008, 10, 196-200.	3.3	39
45	A new vanadium Schiff base complex as catalyst for oxidation of alcohols. Journal of Coordination Chemistry, 2010, 63, 3849-3858.	2.2	39
46	Polymer-Supported Bis-1,2,4-triazolium Ionic Tag Framework for an Efficient Pd(0) Catalytic System in Biomass Derived Î ³ -Valerolactone. ACS Sustainable Chemistry and Engineering, 2019, 7, 6939-6946.	6.7	39
47	Green synthesis of CuO- and Cu ₂ O-NPs in assistance with high-gravity: The flowering of nanobiotechnology. Nanotechnology, 2020, 31, 425101.	2.6	38
48	Highly stretchable, selfâ€adhesive, and selfâ€healable double network hydrogel based on alginate/polyacrylamide with tunable mechanical properties. Journal of Polymer Science, 2020, 58, 2062-2073.	3.8	37
49	Green Synthesis of ZnO NPs via <i>Salvia hispanica</i> : Evaluation of Potential Antioxidant, Antibacterial, Mammalian Cell Viability, H1N1 Influenza Virus Inhibition and Photocatalytic Activities. Journal of Biomedical Nanotechnology, 2020, 16, 456-466.	1.1	37
50	Synthesis, characterization, and catalysis of recyclable new piperazine-bridged Mo(VI) polymers [MoO ₂ (Salen)(piperazine)] _n in highly selective oxygenation of alkenes and sulfides. Journal of Coordination Chemistry, 2013, 66, 2885-2900.	2.2	36
51	Epoxidation of olefins catalyzed by a molybdenum-Schiff base complex anchored in the pores of SBA-15. Journal of Molecular Catalysis A, 2014, 395, 470-480.	4.8	35
52	Mn(III) complex supported on Fe ₃ O ₄ nanoparticles: magnetically separable nanocatalyst for selective oxidation of thiols to disulfides. Journal of Coordination Chemistry, 2013, 66, 3025-3036.	2.2	34
53	Heterostructured TiO ₂ /SiO ₂ /γ-Fe ₂ O ₃ /rGO Coating with Highly Efficient Visible-Light-Induced Self-Cleaning Properties for Metallic Artifacts. ACS Applied Materials & Diterraces, 2020, 12, 29671-29683.	8.0	34
54	Green porous benzamide-like nanomembranes for hazardous cations detection, separation, and concentration adjustment. Journal of Hazardous Materials, 2022, 423, 127130.	12.4	34

#	Article	lF	CITATIONS
55	Simultaneous removal of mercury ions and cationic and anionic dyes from aqueous solution using epichlorohydrin cross-linked chitosan @ magnetic Fe3O4/activated carbon nanocomposite as an adsorbent. Diamond and Related Materials, 2022, 124, 108923.	3.9	34
56	Supported Pd nanoparticles on Mn-based metal–organic coordination polymer: Efficient and recyclable heterogeneous catalyst for Mizoroki–Heck cross coupling reaction of terminal alkenes. Inorganic Chemistry Communication, 2014, 44, 10-14.	3.9	32
57	Synthesis, characterization and catalytic activity of supported vanadium Schiff base complex as a magnetically recoverable nanocatalyst in epoxidation of alkenes and oxidation of sulfides. Journal of Organometallic Chemistry, 2019, 897, 200-206.	1.8	32
58	Green synthesis of PEG-coated MIL-100(Fe) for controlled release of dacarbazine and its anticancer potential against human melanoma cells. International Journal of Pharmaceutics, 2022, 618, 121647.	5.2	32
59	ZnAl nano layered double hydroxides for dual functional CRISPR/Cas9 delivery and enhanced green fluorescence protein biosensor. Scientific Reports, 2020, 10, 20672.	3.3	31
60	Rapid sol gel synthesis of BaFe12O19 nanoparticles: An excellent catalytic application in the electrochemical detection of tramadol in the presence of acetaminophen. Microchemical Journal, 2020, 156, 104803.	4.5	31
61	Nanotechnology-Abetted Astaxanthin Formulations in Multimodel Therapeutic and Biomedical Applications. Journal of Medicinal Chemistry, 2022, 65, 2-36.	6.4	31
62	Bioactive hybrid metal-organic framework (MOF)-based nanosensors for optical detection of recombinant SARS-CoV-2 spike antigen. Science of the Total Environment, 2022, 825, 153902.	8.0	31
63	Facile synthesis of a recyclable Pd-rGO/CNT/CaFe ₂ O ₄ nanocomposite with high multifunctionalÂphotocatalytic activity under visible light irradiation. Journal of Materials Chemistry A, 2019, 7, 16257-16266.	10.3	30
64	High-gravity-assisted green synthesis of palladium nanoparticles: the flowering of nanomedicine. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 30, 102297.	3.3	30
65	Nanotechnology-assisted microfluidic systems: from bench to bedside. Nanomedicine, 2021, 16, 237-258.	3.3	30
66	Immobilization of a molybdenum complex on the surface of magnetic nanoparticles for the catalytic epoxidation of olefins. New Journal of Chemistry, 2016, 40, 1580-1586.	2.8	29
67	Preparation and characterization of a new CdS–NiFe2O4/reduced graphene oxide photocatalyst and its use for degradation of methylene blue under visible light irradiation. Research on Chemical Intermediates, 2018, 44, 5953-5979.	2.7	29
68	Improved green biosynthesis of chitosan decorated Ag- and Co3O4-nanoparticles: A relationship between surface morphology, photocatalytic and biomedical applications. Nanomedicine: Nanotechnology, Biology, and Medicine, 2021, 32, 102331.	3.3	29
69	Green chemistry and coronavirus. Sustainable Chemistry and Pharmacy, 2021, 21, 100415.	3.3	29
70	High-performance thin-film nanocomposite (TFN) forward osmosis (FO) membranes incorporated with porous hydrophobic-core/hydrophilic-shell nanoparticles. Desalination, 2021, 515, 115181.	8.2	29
71	Synthesis and characterization of NaY zeolite-encapsulated Mn-hydrazone Schiff base: an efficient and reusable catalyst for oxidation of olefins. Journal of Coordination Chemistry, 2012, 65, 4054-4066.	2.2	28
72	Catalytic efficacy of an oxido-peroxido tungsten(VI) complex: synthesis, X-ray structure and oxidation of sulfides and olefins. Journal of Coordination Chemistry, 2013, 66, 1897-1905.	2.2	28

#	Article	IF	CITATIONS
73	New molybdenum (VI) catalyst for the epoxidation of alkenes and oxidation of sulfides: An experimental and theoretical study. Inorganica Chimica Acta, 2014, 411, 61-66.	2.4	28
74	<p>Aptamer Hybrid Nanocomplexes as Targeting Components for Antibiotic/Gene Delivery Systems and Diagnostics: A Review</p> . International Journal of Nanomedicine, 2020, Volume 15, 4237-4256.	6.7	28
75	Bio-multifunctional noncovalent porphyrin functionalized carbon-based nanocomposite. Scientific Reports, 2021, 11, 6604.	3.3	28
76	Activated layered manganese oxides with deposited nano-sized gold or silver as an efficient catalyst for epoxidation of olefins. RSC Advances, 2013, 3, 24069.	3.6	27
77	The colorful world of carotenoids: a profound insight on therapeutics and recent trends in nano delivery systems. Critical Reviews in Food Science and Nutrition, 2022, 62, 3658-3697.	10.3	27
78	Nano-layered manganese oxides as low-cost, easily synthesized, environmentally friendly and efficient catalysts for epoxidation of olefins. RSC Advances, 2012, 2, 3654.	3.6	26
79	Efficient imidazolium salts for palladium-catalyzed Mizoroki–Heck and Suzuki–Miyaura cross-coupling reactions. Chinese Chemical Letters, 2013, 24, 433-436.	9.0	26
80	Selective oxidation of sulfides and olefins by a manganese(III) complex containing an N,O-type bidentate oxazine ligand. Journal of Coordination Chemistry, 2013, 66, 464-472.	2.2	26
81	Zn-rich (GaN) _{1â^'x} (ZnO) _x : a biomedical friend?. New Journal of Chemistry, 2021, 45, 4077-4089.	2.8	26
82	Synthesis, Xâ€ray structure, characterization and catalytic activity of a polymeric manganese(II) complex with iminodiacetate. Applied Organometallic Chemistry, 2011, 25, 559-563.	3.5	25
83	High gravity-assisted green synthesis of ZnO nanoparticles via Allium ursinum: Conjoining nanochemistry to neuroscience. Nano Express, 2020, 1, 020025.	2.4	25
84	Oxidation of sulfides with ureaâ€"hydrogen peroxide catalyzed by ironâ€"salen complexes. Journal of Sulfur Chemistry, 2011, 32, 335-343.	2.0	24
85	Manganese and cobalt-terephthalate metal-organic frameworks as a precursor for synthesis of Mn2O3, Mn3O4 and Co3O4 nanoparticles: Active catalysts for olefin heterogeneous oxidation. Inorganic Chemistry Communication, 2015, 61, 73-76.	3.9	24
86	Microfluidic devices with gold thin film channels for chemical and biomedical applications: a review. Biomedical Microdevices, 2019, 21, 93.	2.8	24
87	Synthesis, characterization and mechanistic study of nano chitosan tetrazole as a novel and promising platform for CRISPR delivery. International Journal of Polymeric Materials and Polymeric Biomaterials, 2022, 71, 116-126.	3.4	24
88	Thin-film nanocomposite membranes containing aspartic acid-modified MIL-53-NH2 (Al) for boosting desalination and anti-fouling performance. Desalination, 2022, 521, 115386.	8.2	24
89	Recent Advancements in aptamer-bioconjugates: Sharpening Stones for breast and prostate cancers targeting. Journal of Drug Delivery Science and Technology, 2019, 53, 101146.	3.0	23
90	Mathematical modeling of drug release from biodegradable polymeric microneedles. Bio-Design and Manufacturing, 2019, 2, 96-107.	7.7	23

#	Article	IF	CITATIONS
91	Bioresorbable composite polymeric materials for tissue engineering applications. International Journal of Polymeric Materials and Polymeric Biomaterials, 0, , 1-15.	3.4	23
92	High-Gravity-Assisted Green Synthesis of NiO-NPs Anchored on the Surface of Biodegradable Nanobeads with Potential Biomedical Applications. Journal of Biomedical Nanotechnology, 2020, 16, 520-530.	1.1	23
93	New Magnetically Recyclable Reduced Graphene Oxide rGO/MFe ₂ O ₄ (M= Ca,) Tj ETQq1 Photocatalytic Activity and Stability. Photochemistry and Photobiology, 2018, 94, 1210-1224.	1 0.7843 2.5	14 rgBT /O 21
94	Insight into the Self-Insertion of a Protein Inside the Boron Nitride Nanotube. ACS Omega, 2020, 5, 32051-32058.	3.5	21
95	Development of a novel carboxamide-based off–on switch fluorescence sensor: Hg ²⁺ , Zn ²⁺ and Cd ²⁺ . New Journal of Chemistry, 2020, 44, 11841-11852.	2.8	21
96	Porphyrin Molecules Decorated on Metal-Organic Frameworks for Multi-Functional Biomedical Applications. Biomolecules, 2021, 11, 1714.	4.0	21
97	Synthesis, structural characterization, and catalytic reactivity of a new molybdenum(VI) complex containing 1,3,4-thiadiazole derivative as a tridentate NNO donor ligand. Journal of Coordination Chemistry, 2015, 68, 548-559.	2.2	20
98	Synthesis, structure characterization and study of a new molybdenum Schiff base complex as an epoxidation catalyst with very high turnover numbers. Inorganic Chemistry Communication, 2017, 84, 63-67.	3.9	20
99	Boron Nitride Nanotube as an Antimicrobial Peptide Carrier: A Theoretical Insight. International Journal of Nanomedicine, 2021, Volume 16, 1837-1847.	6.7	20
100	Controlled Gene Delivery Systems: Nanomaterials and Chemical Approaches. Journal of Biomedical Nanotechnology, 2020, 16, 553-582.	1.1	20
101	Synthesis, structural characterization and alcohol oxidation activity of a new mononuclear manganese(II) complex. Transition Metal Chemistry, 2010, 35, 297-303.	1.4	19
102	Synthesis, X-ray studies, and catalytic activity of tridentate Schiff base dioxo-molybdenum(VI). Journal of Coordination Chemistry, 2014, 67, 2435-2444.	2.2	19
103	Novel Pt-Ag3PO4/CdS/Chitosan Nanocomposite with Enhanced Photocatalytic and Biological Activities. Nanomaterials, 2020, 10, 2320.	4.1	19
104	Efficient recyclable catalytic system for deoxygenation of sulfoxides: catalysis of ionic liquid-molybdenum complexes in ionic liquid solution. New Journal of Chemistry, 2012, 36, 971.	2.8	18
105	Mo(<scp>vi</scp>) complex supported on Fe ₃ O ₄ nanoparticles: magnetically separable nanocatalysts for selective oxidation of sulfides to sulfoxides. RSC Advances, 2015, 5, 53349-53356.	3.6	18
106	ONO pincer type binuclear Pd(II) complex: Synthesis, crystal structure and catalytic utilization of the resulting organopalladium complex in catalytic copper-free Sonogashira coupling reaction. Inorganica Chimica Acta, 2016, 451, 227-232.	2.4	18
107	Calcium-based nanomaterials and their interrelation with chitosan: optimization for pCRISPR delivery. Journal of Nanostructure in Chemistry, 2022, 12, 919-932.	9.1	18
108	Synthesis of green benzamide-decorated UiO-66-NH2 for biomedical applications. Chemosphere, 2022, 299, 134359.	8.2	18

#	Article	IF	CITATIONS
109	Tribromoisocyanuric Acid (TBCA) and Oxone®â€MX Systems as Oxidizing Agents: Oxidative Coupling of Thiols to Their Corresponding Disulfides under Mild and Heterogeneous Conditions. Journal of the Chinese Chemical Society, 2007, 54, 1115-1118.	1.4	17
110	Immobilized manganese porphyrin on functionalized magnetic nanoparticles via axial ligation: efficient and recyclable nanocatalyst for oxidation reactions. Journal of Coordination Chemistry, 2015, 68, 2347-2360.	2.2	17
111	Synthesis, characterization, and catalytic activity of supported molybdenum Schiff base complex as a magneticallyÂrecoverable nanocatalyst in epoxidation reaction. Journal of Coordination Chemistry, 2016, 69, 668-677.	2.2	17
112	Manganese(III) porphyrin anchored onto magnetic nanoparticles via "Click―reaction: An efficient and reusable catalyst for the heterogeneous oxidation of alkenes and sulfides. Inorganic Chemistry Communication, 2019, 107, 107495.	3.9	17
113	Synthesis, characterization, and comparison of two new copper(II) complexes containing Schiff-base and diazo ligands as new catalysts in CuAAC reaction. Inorganica Chimica Acta, 2019, 492, 213-220.	2.4	16
114	Thinâ€film nanocomposite forward osmosis membranes modified with Zrâ€based metal–organic framework to improve desalination performance. Applied Organometallic Chemistry, 2020, 34, e5339.	3.5	16
115	Sonochemical fabrication and catalytic properties of α-Fe ₂ O ₃ nanoparticles. Journal of Experimental Nanoscience, 2011, 6, 217-225.	2.4	15
116	Synthesis of Pd(II) large dinuclear macrocyclic complex tethered through two dipyridine-bridged aza-crowns as an efficient copper-Âand phosphine-free Sonogashira catalytic reaction. Journal of Organometallic Chemistry, 2018, 866, 72-78.	1.8	15
117	A Wasteâ€Minimized Approach to Cassarâ€Heck Reaction Based on POLITAGâ€Pd ⁰ Heterogeneous Catalyst and Recoverable Acetonitrile Azeotrope. ChemSusChem, 2021, 14, 3359-3366.	6.8	15
118	Multifunctional green synthesized Cu–Al layered double hydroxide (LDH) nanoparticles: anti-cancer and antibacterial activities. Scientific Reports, 2022, 12, .	3.3	15
119	MIL-125-based nanocarrier decorated with Palladium complex for targeted drug delivery. Scientific Reports, 2022, 12, .	3.3	15
120	Oxoperoxo tungsten(VI) complex immobilized on Schiff base-modified Fe ₃ O ₄ magnetic nanoparticles as a heterogeneous catalyst for oxidation of alcohols with hydrogen peroxide. Journal of Coordination Chemistry, 2017, 70, 328-339.	2.2	14
121	Heterogeneous SBA-15-supported Oxoperoxomolybdenum(VI) complex for enhanced olefin epoxidation. Catalysis Communications, 2017, 88, 9-12.	3.3	14
122	Ultra-small and highly dispersive iron oxide hydroxide as an efficient catalyst for oxidation reactions: a Swiss-army-knife catalyst. Scientific Reports, 2021, 11, 6642.	3.3	14
123	A simple catalyst for aqueous phase Suzuki reactions based on palladium nanoparticles immobilized on an ionic polymer. Science China Chemistry, 2016, 59, 482-486.	8.2	13
124	Nanocluster polyoxomolybdate supported on natural zeolite: a green and recyclable catalyst for epoxidation of alkenes. Journal of Coordination Chemistry, 2017, 70, 2212-2223.	2.2	13
125	Magnetically Recoverable TiO2/SiO2/ \hat{I}^3 -Fe2O3/rGO Composite with Significantly Enhanced UV-Visible Light Photocatalytic Activity. Molecules, 2020, 25, 2996.	3.8	13
126	Molybdenum(VI)–oxodiperoxo complex containing an oxazine ligand: synthesis, X-ray studies, and catalytic activity. Journal of Coordination Chemistry, 2014, 67, 1429-1436.	2.2	12

#	Article	IF	CITATIONS
127	An efficient glucose-based ligand for Heck and Suzuki coupling reactions in aqueous media. Journal of the Iranian Chemical Society, 2014, 11, 441-446.	2.2	12
128	Green carbon-based nanocompositeÂbiomaterials through the lens of microscopes. Emergent Materials, 2022, 5, 665-671.	5.7	12
129	Oxidoâ€peroxido W(VI)â€histidine–MgAlâ€layered double hydroxide composite as an efficient catalyst in sulfide oxidation. Applied Organometallic Chemistry, 2018, 32, e4358.	3.5	11
130	Green composites in bone tissue engineering. Emergent Materials, 2022, 5, 603-620.	5.7	11
131	Synthesis and crystal structures of a series of (μ-thiophenolato)(Î⅓-pyrazolato-N,N′) double bridged dipalladium(II) complexes and their application in Mizoroki–Heck reaction as highly efficient catalysts. Inorganica Chimica Acta, 2016, 440, 107-117.	2.4	10
132	A novel iron complex containing an N,O-type bidentate oxazoline ligand: Synthesis, X-ray studies, DFT calculations and catalytic activity. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 133, 432-438.	3.9	9
133	Synthesis and characterization of magnetic silica-supported Mn(II)-substituted polyoxophosphotungstate as catalyst in sulfoxidation reaction. Journal of Nanoparticle Research, 2016, 18, 1.	1.9	9
134	Diastereoselective Synthesis and Catalytic Activity of Two Chiral <i>cis</i> àâ€Dioxidomolybdenum(VI) Complexes. European Journal of Inorganic Chemistry, 2018, 2018, 2549-2556.	2.0	9
135	Catalytic and antibacterial properties of 3â€dentate carboxamide Pd/Pt complexes obtained via a benign route. Applied Organometallic Chemistry, 2020, 34, e5531.	3.5	9
136	Development of a nano biosensor for anti-gliadin detection for Celiac disease based on suspension microarrays. Biomedical Physics and Engineering Express, 2020, 6, 055015.	1.2	9
137	Immobilized Polyoxomolybdate Nanoclusters on Functionalized SBAâ€15: Green Access to Efficient and Recyclable Nanocatalyst for the Epoxidation of Alkenes. ChemistrySelect, 2019, 4, 5911-5917.	1.5	8
138	Synthesis of dipyroromethanes in water and investigation of electronic and steric effects in efficiency of olefin epoxidation by sodium periodate catalyzed by manganese tetraaryl and <i>trans </i> disubstituted porphyrin complexes. Journal of Porphyrins and Phthalocyanines, 2019, 23, 671-678.	0.8	8
139	Synthesis and characterization of molybdenum (VI) complex immobilized on polymeric Schiff baseâ€coated magnetic nanoparticles as an efficient and retrievable nanocatalyst in olefin epoxidation reactions. Applied Organometallic Chemistry, 2020, 34, e5410.	3.5	8
140	Promising new catalytic properties of a Co (II)â€carboxamide complex and its derived Co ₃ O ₄ nanoparticles for the Mizorokiâ€Heck and the Epoxidation reactions. Applied Organometallic Chemistry, 2020, 34, e5911.	3.5	7
141	A water-oxidizing dinuclear iron complex as an efficient catalyst toward organic sulfide oxidation. Journal of Coordination Chemistry, 2014, 67, 3026-3032.	2.2	6
142	Catalytic behavior of an iron(III) complex containing an N,O-type bidentate oxazoline ligand for selective oxidation of sulfides. Transition Metal Chemistry, 2016, 41, 97-105.	1.4	6
143	Immobilization of dioxomolybdenum(VI) Schiff base complex on graphene oxide nanosheets and its catalytic activity for oxidation of sulfides. Journal of Coordination Chemistry, 2017, 70, 2986-2998.	2.2	6
144	Heterogenization of manganese porphyrin via hydrogen bond in zeolite imidazolate framework-8 matrix, a host–guest interaction, as catalytic system for olefin epoxidation. Journal of Porphyrins and Phthalocyanines, 2018, 22, 972-980.	0.8	6

#	Article	IF	CITATIONS
145	Synthesis and characterization of a new zwitterionic palladium complex as an environmentally friendly catalyst for the Heck-Mizoroki coupling reaction in GVL. Molecular Catalysis, 2019, 474, 110406.	2.0	6
146	A sensitive voltammetric morphine nanosensor based on BaFe12O19 nanoparticle-modified screen-printed electrodes. Journal of the Iranian Chemical Society, 2020, 17, 717-724.	2.2	6
147	Oxidative transformation of organic compounds using bis(1,10-phenanthroline)silver(II) peroxydisulfate as a twin catalyst/oxidant. Journal of the Iranian Chemical Society, 2008, 5, S108-S112.	2.2	5
148	Synthesis, crystal structure and catalytic activity of an oxo-diperoxo tungsten(VI) complex containing an oxazine ligand for selective oxidation of sulfides. Journal of Coordination Chemistry, 2018, 71, 3405-3414.	2.2	5
149	A Perspective to the Correlation Between Brain Insulin Resistance and Alzheimer: Medicinal Chemistry Approach. Current Diabetes Reviews, 2019, 15, 255-258.	1.3	5
150	Polyoxometalateâ€supported <scp>Pd</scp> nanoparticles as efficient catalysts for the <scp>M</scp> izorokiâ€ <scp>H</scp> eck crossâ€coupling reactions in <scp>PEG</scp> medium. Applied Organometallic Chemistry, 2020, 34, e5287.	3.5	5
151	Synthesis and characterization of two binuclear nickel(II) complexes of thiophenol-based "end-off― compartmental ligands and their application as catalysts for selective oxidation of sulfides. Journal of Coordination Chemistry, 2016, 69, 103-111.	2.2	4
152	Vanadium supported on spinel cobalt ferrite nanoparticles as an efficient and magnetically recoverable catalyst for oxidative degradation of methylene blue. Applied Organometallic Chemistry, 2019, 33, e5127.	3.5	4
153	Mg–Al layered double hydroxide intercalated with manganese(III) 5,10,15,20â€ŧetrakis(4â€benzoate)porphyrinacetate as a highly reusable catalyst for epoxidation. Applied Organometallic Chemistry, 2019, 33, e4657.	3.5	4
154	On the Role of \hat{I}^3 -Fe2O3 Nanoparticles and Reduced Graphene Oxide Nanosheets in Enhancing Self-Cleaning Properties of Composite TiO2 for Cultural Heritage Protection. Coatings, 2020, 10, 933.	2.6	4
155	Vanadium oxideâ€supported copper ferrite nanoparticles: A reusable and highly efficient catalyst for rhodamine B degradation via activation of peroxymonosulfate. Applied Organometallic Chemistry, 2021, 35, e6367.	3.5	4
156	<i>In situ</i> generation of highly active bis(Nâ€heterocyclic)carbene palladium as an efficient catalyst in direct <i>S</i> â€arylation of methylphenyl sulfoxide and the Heck reaction: Ligand steric effects in product selectivity. Applied Organometallic Chemistry, 2017, 31, e3677.	3.5	3
157	Magnetic properties, structural studies and microwave absorption performance of Ba0.5Sr0.5CuxZrxFe12-2xO19/Poly Ortho-Toluidine (XÂ=Â0.2,0.4, 0.6, 0.8) ceramic nanocomposites. Inorganic Chemistry Communication, 2021, 132, 108802.	3.9	3
158	Highly stable magnetically separable copper nanocatalyst as an efficient catalyst for $C(sp < sup > 2 < /sup >)$ â∈" $C(sp < sup > 2 < /sup >)$ crossâ€coupling reactions. Applied Organometallic Chemistry, 2017, 31, e3691.	3.5	2
159	Synthesis and characterization of molybdenum complex supported on magnetic and non-magnetic supports: comparing their catalytic activity, selectivity, and reusability. Journal of the Iranian Chemical Society, 2019, 16, 673-685.	2.2	2