
Yosuke Hashimoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8621529/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recurrent <i>de novo</i> mutations in <i>CLDN5</i> induce an anion-selective blood–brain barrier and alternating hemiplegia. Brain, 2022, 145, 3374-3382.	7.6	13
2	Safety and efficacy of an anti-claudin-5 monoclonal antibody to increase blood–brain barrier permeability for drug delivery to the brain in a non-human primate. Journal of Controlled Release, 2021, 336, 105-111.	9.9	16
3	Claudin-5: A Pharmacological Target to Modify the Permeability of the Blood–Brain Barrier. Biological and Pharmaceutical Bulletin, 2021, 44, 1380-1390.	1.4	20
4	Tight junction modulators for drug delivery to the central nervous system. Drug Discovery Today, 2020, 25, 1477-1486.	6.4	12
5	Tight junction modulation at the blood-brain barrier: Current and future perspectives. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183298.	2.6	51
6	Potential for Tight Junction Protein–Directed Drug Development Using Claudin Binders and Angubindin-1. International Journal of Molecular Sciences, 2019, 20, 4016.	4.1	28
7	Anti-Claudin Antibodies as a Concept for Development of Claudin-Directed Drugs. Journal of Pharmacology and Experimental Therapeutics, 2019, 368, 179-186.	2.5	11
8	Development of drug delivery system for treatment of central nervous system diseases targeting tight junctions. Drug Delivery System, 2019, 34, 374-384.	0.0	0
9	Safety evaluation of a human chimeric monoclonal antibody that recognizes the extracellular loop domain of claudin-2. European Journal of Pharmaceutical Sciences, 2018, 117, 161-167.	4.0	12
10	A hydroxyl PEG version of PEGylated liposomes and its impact on anti-PEG IgM induction and on the accelerated clearance of PEGylated liposomes. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 127, 142-149.	4.3	53
11	A Cell Assay for Detecting Anti-PEG Immune Response against PEG-Modified Therapeutics. Pharmaceutical Research, 2018, 35, 223.	3.5	16
12	A Novel Platform for Cancer Vaccines: Antigen-Selective Delivery to Splenic Marginal Zone B Cells via Repeated Injections of PEGylated Liposomes. Journal of Immunology, 2018, 201, 2969-2976.	0.8	25
13	Engineered membrane protein antigens successfully induce antibodies against extracellular regions of claudin-5. Scientific Reports, 2018, 8, 8383.	3.3	28
14	Claudinâ€ŧargeted drug development using anti laudin monoclonal antibodies to treat hepatitis and cancer. Annals of the New York Academy of Sciences, 2017, 1397, 5-16.	3.8	18
15	Claudin-5-Binders Enhance Permeation of Solutes across the Blood-Brain Barrier in a Mammalian Model. Journal of Pharmacology and Experimental Therapeutics, 2017, 363, 275-283.	2.5	44
16	Roles of the first-generation claudin binder, Clostridium perfringens enterotoxin, in the diagnosis and claudin-targeted treatment of epithelium-derived cancers. Pflugers Archiv European Journal of Physiology, 2017, 469, 45-53.	2.8	22
17	Generation and characterization of a human–mouse chimeric antibody against the extracellular domain of claudin-1 for cancer therapy using a mouse model. Biochemical and Biophysical Research Communications, 2016, 477, 91-95.	2.1	11
18	Efficacy and safety evaluation of claudinâ€4â€ŧargeted antitumor therapy using a human and mouse crossâ€reactive monoclonal antibody. Pharmacology Research and Perspectives, 2016, 4, e00266.	2.4	24

YOSUKE НАЗНІМОТО

#	Article	IF	CITATIONS
19	Current progress in a second-generation claudin binder, anti-claudin antibody, for clinical applications. Drug Discovery Today, 2016, 21, 1711-1718.	6.4	11
20	Gene Silencing Using 4′-thioDNA as an Artificial Template to Synthesize Short Hairpin RNA Without Inducing a Detectable Innate Immune Response. Molecular Therapy - Nucleic Acids, 2016, 5, e274.	5.1	16
21	Relationship between the Concentration of Anti-polyethylene Glycol (PEG) Immunoglobulin M (IgM) and the Intensity of the Accelerated Blood Clearance (ABC) Phenomenon against PEGylated Liposomes in Mice. Biological and Pharmaceutical Bulletin, 2015, 38, 417-424.	1.4	46
22	Anti-PEG lgM and complement system are required for the association of second doses of PEGylated liposomes with splenic marginal zone B cells. Immunobiology, 2015, 220, 1151-1160.	1.9	70
23	Anti-PEG IgM Is a Major Contributor to the Accelerated Blood Clearance of Polyethylene Glycol-Conjugated Protein. Molecular Pharmaceutics, 2015, 12, 2429-2435.	4.6	154
24	Comprehensive analysis of PEGylated liposomeâ€associated proteins relating to the accelerated blood clearance phenomenon by combination with shotgun analysis and conventional methods. Biotechnology and Applied Biochemistry, 2015, 62, 547-555.	3.1	13
25	Activation of TLR9 by incorporated pDNA within PEG-coated lipoplex enhances anti-PEG lgM production. Gene Therapy, 2014, 21, 593-598.	4.5	17
26	Generation, characterization and in vivo biological activity of two distinct monoclonal anti-PEG IgMs. Toxicology and Applied Pharmacology, 2014, 277, 30-38.	2.8	37
27	B cell-intrinsic toll-like receptor 7 is responsible for the enhanced anti-PEG IgM production following injection of siRNA-containing PEGylated lipoplex in mice. Journal of Controlled Release, 2014, 184, 1-8.	9.9	23
28	Chemistry, Properties, and in Vitro and in Vivo Applications of 2′â€ <i>O</i> â€Methoxyethylâ€4′â€ŧhioRNA, Novel Hybrid Type of Chemically Modified RNA. ChemBioChem, 2014, 15, 2535-2540.	a 2.6	15