Erno Sajo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/862106/publications.pdf

Version: 2024-02-01

586496 620720 98 830 16 26 h-index citations g-index papers 100 100 100 1077 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Technical Report: Development and Implementation of an Open Source Template Interpretation Class Library for Automated Treatment Planning. Practical Radiation Oncology, 2022, 12, e153-e160.	1.1	3
2	Remote sensing array (RSA) for linac beam monitoring. Physics in Medicine and Biology, 2022, , .	1.6	1
3	Resistive electrode array (REA) for radiotherapy beam monitoring and quality assurance. Physics in Medicine and Biology, 2022, 67, 135005.	1.6	1
4	Selfâ€powered multilayer radioisotope identification device. Medical Physics, 2021, 48, 1921-1930.	1.6	1
5	Gold nanoparticle detection and quantification in therapeutic MV beams via pair production. Physics in Medicine and Biology, 2021, 66, 064004.	1.6	2
6	Application programming interface guided QA plan generation and analysis automation. Journal of Applied Clinical Medical Physics, 2021, 22, 26-34.	0.8	4
7	Practical Guidelines on Implementing Hypofractionated Radiotherapy for Prostate Cancer in Africa. Frontiers in Oncology, 2021, 11, 725103.	1.3	3
8	Automated and robust beam data validation of a preconfigured ring gantry linear accelerator using a 1D tank with synchronized beam delivery and couch motions. Journal of Applied Clinical Medical Physics, 2020, 21, 200-207.	0.8	2
9	Towards customizable thin-panel low-Z detector arrays: electrode design for increased spatial resolution ion chamber arrays. Physics in Medicine and Biology, 2020, 65, 08NT02.	1.6	3
10	Nanoporous aerogel-based periodic high-energy electron current x-ray sensors. Journal Physics D: Applied Physics, 2020, 53, 265303.	1.3	5
11	Hypofractionated Radiotherapy in African Cancer Centers. Frontiers in Oncology, 2020, 10, 618641.	1.3	10
12	Selfâ€powered nanoâ€porous aerogel xâ€ray sensor employing fast electron current. Medical Physics, 2019, 46, 4233-4240.	1.6	9
13	3D printing for rapid prototyping of lowâ€Z/density ionization chamber arrays. Medical Physics, 2019, 46, 5770-5779.	1.6	4
14	The dichotomous nature of dose enhancement by gold nanoparticle aggregates in radiotherapy. Nanomedicine, 2018, 13, 809-823.	1.7	12
15	Flexible perovskite based X-ray detectors for dose monitoring in medical imaging applications. Physics in Medicine, 2018, 5, 20-23.	0.6	62
16	Minimizing the potential of cancer recurrence and metastasis by the use of graphene oxide nano-flakes released from smart fiducials during image-guided radiation therapy. Physica Medica, 2018, 55, 8-14.	0.4	10
17	Equivalency of beam scan data collection using a 1D tank andÂautomated couch movements to traditional 3D tank measurements. Journal of Applied Clinical Medical Physics, 2018, 19, 60-67.	0.8	2
18	Technical Note: A novel interdigital transparent thinâ€film detector for medical dosimetry. Medical Physics, 2017, 44, 1969-1974.	1.6	0

#	Article	IF	Citations
19	Effective Contact Potential of Thin Film Metal-Insulator Nanostructures and Its Role in Self-Powered Nanofilm X-ray Sensors. ACS Applied Materials & Samp; Interfaces, 2017, 9, 11258-11265.	4.0	6
20	A Monte Carlo study of I-125 prostate brachytherapy with gold nanoparticles: dose enhancement with simultaneous rectal dose sparing via radiation shielding. Physics in Medicine and Biology, 2017, 62, 1935-1948.	1.6	21
21	Technical Note: Direct measurement of continuous TMR data with a 1D tank and automated couch movements. Medical Physics, 2017, 44, 3861-3865.	1.6	2
22	Comment on: Polarity effects and apparent ion recombination in microionization chambers Med. Phys. 43(5), 2141–2152 (2016). Medical Physics, 2017, 44, 1204-1205.	1.6	2
23	Angular dose anisotropy around gold nanoparticles exposed to X-rays. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 1653-1661.	1.7	14
24	Potential Role of the Quality Assurance Review Center Platform in Global Radiation Oncology. International Journal of Radiation Oncology Biology Physics, 2017, 99, 956-962.	0.4	4
25	Portal <scp>MV</scp> imaging with thinâ€film highâ€energy current Xâ€ray detectors: A Monte Carlo study. Medical Physics, 2017, 44, 6128-6137.	1.6	0
26	Signal enhancement due to high $\hat{\epsilon}$ nanofilm electrodes in parallel plate ionization chambers with variable microgaps. Medical Physics, 2017, 44, 6632-6640.	1.6	1
27	Monte Carlo Calculations of TG-43 Dosimetry Parameters of Low-Energy Brachytherapy Seeds for Gold Nanoparticle-Aided Radiotherapy. Brachytherapy, 2017, 16, S32-S33.	0.2	0
28	Nanoparticle-aided external beam radiotherapy leveraging the ÄŒerenkov effect. Physica Medica, 2016, 32, 944-947.	0.4	17
29	Topological detector: measuring continuous dosimetric quantities with few-element detector array. Physics in Medicine and Biology, 2016, 61, N403-N414.	1.6	4
30	Enhancing radiotherapy for lung cancer using immunoadjuvants delivered < i>in situ < /i>from new design radiotherapy biomaterials: a preclinical study. Physics in Medicine and Biology, 2016, 61, N697-N707.	1.6	24
31	Potential of using cerium oxide nanoparticles for protecting healthy tissue during accelerated partial breast irradiation (APBI). Physica Medica, 2016, 32, 631-635.	0.4	27
32	Radiosensitization of Prostate With Simultaneous Rectal Dose Sparing Via Radiation Trapping by Gold Nanoparticles in I-125 Prostate Brachytherapy. International Journal of Radiation Oncology Biology Physics, 2016, 96, E259-E260.	0.4	3
33	The radiosensitizing effect of the aurora kinase inhibitors, ENMDâ€2076, on canine mast cell tumours <i>in vitro</i> . Veterinary and Comparative Oncology, 2016, 14, 13-27.	0.8	10
34	Fundamental Physics of Tumor Treating Fields. , 2016, , 15-27.		1
35	Computer Simulation of Tumor Treating Fields. , 2016, , 41-54.		0
36	Nanoscale radiation transport and clinical beam modeling for gold nanoparticle dose enhanced radiotherapy (GNPT) using X-rays. British Journal of Radiology, 2016, 89, 20150200.	1.0	58

#	Article	IF	CITATIONS
37	SU-F-T-676: Measurement of Hydroxyl Radicals in Radiolized Water Systems. Medical Physics, 2016, 43, 3619-3620.	1.6	O
38	WE-FG-BRA-09: Using Graphene Oxide Nano Flakes During Image Guided Radiotherapy to Minimize the Potential of Cancer Recurrence Or Metastasis. Medical Physics, 2016, 43, 3825-3825.	1.6	0
39	SU-F-T-663: Cerenkov Radiation Enhanced Radiotherapy with Titanium Dioxide Nanoparticle: A Monte Carlo Study. Medical Physics, 2016, 43, 3616-3617.	1.6	O
40	SU-F-T-664: The Efficacy of Gold Nanoparticles as Contrast Agents in Mice. Medical Physics, 2016, 43, 3617-3617.	1.6	0
41	SU-F-T-660: Evaluating the Benefit of Using Dual-Function Fiducial Markers for In-Situ Delivery of Radiosenistizing Gold Nanoparticles During Image-Guided Radiotherapy. Medical Physics, 2016, 43, 3616-3616.	1.6	0
42	SU-F-E-14: Global Radiation Oncology Education and Training in Medical Physics Powered by Information and Communication Technologies. Medical Physics, 2016, 43, 3356-3356.	1.6	0
43	TU-H-CAMPUS-TeP2-05: Selective Protection of Normal Tissue by Cerium Oxide Nanoparticles During Radiation Therapy. Medical Physics, 2016, 43, 3784-3784.	1.6	0
44	SU-G-TeP3-06: Nanoparticle-Aided External Beam Radiotherapy Leveraging the Cerenkov Effect. Medical Physics, 2016, 43, 3675-3675.	1.6	0
45	Prototypes of self-powered radiation detectors employing intrinsic high-energy current. Medical Physics, 2015, 43, 16-22.	1.6	10
46	A self-powered thin-film radiation detector using intrinsic high-energy current. Medical Physics, 2015, 43, 4-15.	1.6	13
47	Kilovoltage radiosurgery with gold nanoparticles for neovascular age-related macular degeneration (AMD): a Monte Carlo evaluation. Physics in Medicine and Biology, 2015, 60, 9203-9213.	1.6	20
48	New potential for enhancing concomitant chemoradiotherapy with FDA approved concentrations of cisplatin via the photoelectric effect. Physica Medica, 2015, 31, 25-30.	0.4	16
49	Potential for Information and Communication Technologies to Catalyze Global Collaborations in Radiation Oncology. International Journal of Radiation Oncology Biology Physics, 2015, 91, 444-447.	0.4	20
50	Brachytherapy Application With In Situ Dose Painting Administered by Gold Nanoparticle Eluters. International Journal of Radiation Oncology Biology Physics, 2015, 91, 385-392.	0.4	37
51	Capture of aerosolized spores from air streams impinging onto fabrics. Journal of Aerosol Science, 2015, 80, 75-85.	1.8	1
52	Dosimetric properties of high energy current (HEC) detector in keV x-ray beams. Physics in Medicine and Biology, 2015, 60, N121-N129.	1.6	9
53	Towards thin-film self-powered radiation detectors employing disparate conductive layers. Journal Physics D: Applied Physics, 2015, 48, 275503.	1.3	9
54	Targeted radiotherapy enhancement during electronic brachytherapy of accelerated partial breast irradiation (APBI) using controlled release of gold nanoparticles. Physica Medica, 2015, 31, 1070-1074.	0.4	23

#	Article	IF	Citations
55	Potential for enhancing external beam radiotherapy for lung cancer using high-Z nanoparticles administered via inhalation. Physics in Medicine and Biology, 2015, 60, 7035-7043.	1.6	30
56	Monte Carlo simulation of a prototypical patient dosimetry system for fluoroscopic procedures. Physics in Medicine and Biology, 2015, 60, 5891-5909.	1.6	5
57	A Software App for Radiotherapy with In-situ Dose-painting using high Z nanoparticles. IFMBE Proceedings, 2015, 51, 618-621.	0.2	1
58	Technical Note: Nanometric organic photovoltaic thin film detectors for dose monitoring in diagnostic xâ€ray imaging. Medical Physics, 2015, 42, 4027-4032.	1.6	9
59	Nanoparticle-aided Radiotherapy for Retinoblastoma and Choroidal Melanoma. IFMBE Proceedings, 2015, 51, 907-910.	0.2	1
60	New Potential for Employing Fiducials to Combat Metastasis via the Abscopal Effect. International Journal of Radiation Oncology Biology Physics, 2015, 93, E628.	0.4	0
61	SUâ€Dâ€210â€04: Using Radiotherapy Biomaterials to Brand and Track Deadly Cancer Cells. Medical Physics, 2015, 42, 3222-3222.	1.6	1
62	SU-E-T-279: Dose Enhancement Effect Due to Cerium Oxide Nanoparticles Employed as Radiation Protectants. Medical Physics, 2015, 42, 3397-3397.	1.6	1
63	MOâ€FGâ€BRAâ€04: Leveraging the Abscopal Effect Via New Design Radiotherapy Biomaterials Loaded with Immune Checkpoint Inhibitors. Medical Physics, 2015, 42, 3565-3565.	1.6	0
64	SUâ€Eâ€Tâ€352: Effects of Skull Attenuation and Missing Backscatter On Brain Dose in HDR Treatment of the Head with Surface Applicators. Medical Physics, 2015, 42, 3414-3414.	1.6	0
65	TU-F-CAMPUS-T-05: Dose Escalation to Biological Tumor Volumes of Prostate Cancer Patients Using Gold Nanoparticles. Medical Physics, 2015, 42, 3644-3645.	1.6	0
66	TU-F-CAMPUS-T-02: Monte Carlo Evaluation of Kilovoltage Radiosurgery with AuNPs for Age Related Macular Degeneration (AMD). Medical Physics, 2015, 42, 3644-3644.	1.6	0
67	MOâ€FGâ€BRAâ€05: Next Generation Radiotherapy Biomaterials Loaded With Gold Nanoparticles. Medical Physics, 2015, 42, 3565-3565.	1.6	0
68	Lowâ€Z linac targets for lowâ€MV gold nanoparticle radiation therapy. Medical Physics, 2014, 41, 021701.	1.6	17
69	Beam quality and dose perturbation of 6ÂMV flattening-filter-free linac. Physica Medica, 2014, 30, 47-56.	0.4	25
70	WE-G-BRE-03: Dose Painting by Numbers Using Targeted Gold Nanoparticles. Medical Physics, 2014, 41, 517-517.	1.6	0
71	SU-E-CAMPUS-I-01: Nanometric Organic Photovoltaic Thin Film X-Ray Detectors for Clinical KVp Beams. Medical Physics, 2014, 41, 384-385.	1.6	0
72	SU-E-T-333: Towards Customizable Radiotherapy Enhancement (CuRE) for Prostate Cancer Using Cisplatin Nanoparticles. Medical Physics, 2014, 41, 301-301.	1.6	0

#	Article	IF	CITATIONS
73	WE-G-BRE-09: Targeted Radiotherapy Enhancement During Accelerated Partial Breast Irradiation (ABPI) Using Controlled Release of Gold Nanoparticles (GNPs). Medical Physics, 2014, 41, 519-519.	1.6	O
74	WE-G-BRE-06: New Potential for Enhancing External Beam Radiotherapy for Lung Cancer Using FDA-Approved Concentrations of Cisplatin Or Carboplatin Nanoparticles Administered Via Inhalation. Medical Physics, 2014, 41, 518-518.	1.6	0
75	WE-A-16A-01: International Medical Physics Symposium: Increasing Access to Medical Physics Education/Training and Research Excellence. Medical Physics, 2014, 41, 484-486.	1.6	0
76	A stochastic model of cell survival for high-Z nanoparticle radiotherapy. Medical Physics, 2013, 40, 024102.	1.6	27
77	Impact of beam quality on megavoltage radiotherapy treatment techniques utilizing gold nanoparticles for dose enhancement. Physics in Medicine and Biology, 2013, 58, 451-464.	1.6	70
78	Dependence of Monte Carlo microdosimetric computations on the simulation geometry of gold nanoparticles. Physics in Medicine and Biology, 2013, 58, 7961-7977.	1.6	79
79	Simulation of Aerosol Coagulation and Deposition Under Multiple Flow Regimes with Arbitrary Computational Precision. Aerosol Science and Technology, 2013, 47, 530-542.	1.5	17
80	WE-A-108-02: Radiotherapy Enhancement for Prostate Cancer Using Platinum-Based Nanoparticles. Medical Physics, 2013, 40, 465-465.	1.6	0
81	SU-E-T-586: Brachytherapy Application with in Situ Dose-Painting Administered Via Gold-Nanoparticle Eluters (BANDAGE) for Prostate Cancer (PCa). Medical Physics, 2013, 40, 340-340.	1.6	0
82	WE-E-108-02: Tumor Vasculature Dose-Painting with FDA Approved Concentrations of Cisplatin, Oxaliplatin, and Carboplatin Nanoparticles During External Beam Radiotherapy. Medical Physics, 2013, 40, 488-488.	1.6	0
83	SU-E-T-302; Customizable Radiotherapy Enhancement (CuRE) for Retinal Diseases Using Nanoparticles. Medical Physics, 2013, 40, 274-274.	1.6	0
84	SU-E-T-35: Optimal Clinical Megavoltage X-Ray Beam Quality for Contrast Enhanced RT (CERT). Medical Physics, 2012, 39, 3710-3710.	1.6	1
85	Dependence of Cell Survival on Iododeoxyuridine Concentration in 35-keV Photon-Activated Auger Electron Radiotherapy. International Journal of Radiation Oncology Biology Physics, 2011, 79, 255-261.	0.4	8
86	TH-D-BRD-09: Dependence of CHO Cell Survival On IUdR Uptake for 35-KeV Photoactivated Auger Electron Therapy. Medical Physics, 2009, 36, 2809-2809.	1.6	0
87	Radiosensitivity of canine osteosarcoma cells transfected with wildâ€type p53 <i>in vitro</i> *. Veterinary and Comparative Oncology, 2008, 6, 193-200.	0.8	7
88	Monochromatic beam characterization for Auger electron dosimetry and radiotherapy. European Journal of Radiology, 2008, 68, S137-S141.	1,2	9
89	Dosimetry intercomparison using a 35-keV X-ray synchrotron beam. European Journal of Radiology, 2008, 68, S121-S125.	1.2	12
90	Evaluation of the Exact Coagulation Kernel under Simultaneous Brownian Motion and Gravitational Settling. Aerosol Science and Technology, 2008, 42, 134-139.	1.5	11

#	Article	IF	CITATIONS
91	SU-GG-T-401: Cell Survival Following X-Ray Activated Auger Electron Radiotherapy. Medical Physics, 2008, 35, 2817-2817.	1.6	O
92	SUâ€FFâ€Tâ€235: Fluence Determination in a Polarized Synchrotronâ€Generated Monochromatic Xâ€Ray Beam. Medical Physics, 2007, 34, 2455-2456.	1.6	0
93	TH-C-230A-04: Characterizing a Monochromatic X-Ray Beam From a 1.3 GeV Synchrotron for Auger Electron Radiotherapy and Dosimetry Studies. Medical Physics, 2006, 33, 2271-2271.	1.6	1
94	AN ESTIMATE OF SPATIAL UNCERTAINTY OF MEAN CONCENTRATIONS PREDICTED BY GAUSSIAN DISPERSION MODELS. Health Physics, 2003, 85, 174-183.	0.3	2
95	The role of Auger electrons versus photoelectrons in nanoparticle dose enhancement., 0,, 1-1-1-15.		2
96	Nanoparticle enhanced radiotherapy: quality assurance perspective. , 0, , .		1
97	Deterministic computation benchmarks of nanoparticle dose enhancementâ€"part II. Microscopic to macroscopic scales. , 0, , .		O
98	Deterministic computation benchmarks of nanoparticle dose enhancementâ€"part I. Nanometer scales. , 0, , .		0