Simon R Leather

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8621009/publications.pdf

Version: 2024-02-01

221 papers 8,222 citations

42 h-index 79 g-index

237 all docs

237 docs citations

times ranked

237

7478 citing authors

#	Article	IF	CITATIONS
1	Host Plant Quality and Fecundity in Herbivorous Insects. Annual Review of Entomology, 2002, 47, 817-844.	5.7	1,662
2	Interpreting insect declines: seven challenges and a way forward. Insect Conservation and Diversity, 2020, 13, 103-114.	1.4	271
3	Unravelling the evolution of autumn colours: an interdisciplinary approach. Trends in Ecology and Evolution, 2009, 24, 166-173.	4.2	245
4	Size, Reproductive Potential and Fecundity in Insects: Things aren't as Simple as They Seem. Oikos, 1988, 51, 386.	1.2	226
5	International scientists formulate a roadmap for insect conservation and recovery. Nature Ecology and Evolution, 2020, 4, 174-176.	3.4	176
6	Invertebrates in urban areas: A review. European Journal of Entomology, 2012, 109, 463-478.	1.2	174
7	Is the insect apocalypse upon us? How to find out. Biological Conservation, 2020, 241, 108327.	1.9	167
8	"Ecological Armageddon―– more evidence for the drastic decline in insect numbers. Annals of Applied Biology, 2018, 172, 1-3.	1.3	134
9	Mortality during dispersal and the cost of hostâ€specificity in parasites: how many aphids find hosts?. Journal of Animal Ecology, 1998, 67, 763-773.	1.3	132
10	The effects of farming system and fertilisers on pests and natural enemies: A synthesis of current research. Agriculture, Ecosystems and Environment, 2011, 141, 261-270.	2.5	113
11	A test of the coevolution theory of autumn colours: colour preference of Rhopalosiphum padion Prunus padus. Oikos, 2005, 110, 339-343.	1.2	109
12	Optimizing field margins for biocontrol services: The relative role of aphid abundance, annual floral resources, and overwinter habitat in enhancing aphid natural enemies. Agriculture, Ecosystems and Environment, 2015, 199, 94-104.	2.5	99
13	Aphid growth and reproductive rates. Entomologia Experimentalis Et Applicata, 1984, 35, 137-140.	0.7	96
14	Factors determining the pest status of the bird cherry-oat aphid, <i>Rhopalo-siphum padi</i> (L.) (Hemiptera: Aphididae), in Europe: a study and review. Bulletin of Entomological Research, 1989, 79, 345-360.	0.5	96
15	Host plant effects on the performance of the aphid Aulacorthum solani (Kalt.) (Homoptera: Aphididae) at ambient and elevated CO 2. Global Change Biology, 1997, 3, 545-549.	4.2	93
16	Effects of simulated solar radiation on conidial germination of Metarhizium anisopliae in different formulations. Crop Protection, 1998, 17, 675-679.	1.0	93
17	The effect of cereal growth stage and feeding site on the reproductive activity of the birdâ€cherry aphid, ⟨i⟩Rhopalosiphum padi⟨/i⟩. Annals of Applied Biology, 1981, 97, 135-141.	1.3	90
18	Biodiversity on urban roundabouts—Hemiptera, management and the species–area relationship. Basic and Applied Ecology, 2004, 5, 367-377.	1.2	90

#	Article	IF	CITATIONS
19	Oviposition preferences in relation to larval growth rates and survival in the pine beauty moth, Panolis flammea. Ecological Entomology, 1985, 10, 213-217.	1.1	83
20	Predicting a global insect apocalypse. Insect Conservation and Diversity, 2019, 12, 263-267.	1.4	79
21	Seasonal Variation in Reproductive Potential: A Programmed Feature of Aphid Life Cycles. Journal of Animal Ecology, 1980, 49, 975.	1.3	76
22	The potential for manipulating crop–pest–natural enemy interactions for improved insect pest management. Bulletin of Entomological Research, 1998, 88, 493-501.	0.5	76
23	Insect Species Richness of the British Rosaceae: The Importance of Host Range, Plant Architecture, Age of Establishment, Taxonomic Isolation and Species-Area Relationships. Journal of Animal Ecology, 1986, 55, 841.	1.3	74
24	Effect of nitrogen fertilizer on the growth and survival of Rhopalosiphum padi (L.) and Sitobion avenae (F.) (Homoptera: Aphididae) on different wheat cultivars. Crop Protection, 2011, 30, 216-221.	1.0	73
25	Insect-induced chemical changes in young lodgepole pine (Pinus contorta): the effect of previous defoliation on oviposition, growth and survival of the pine beauty moth, Panolis flammea. Ecological Entomology, 1987, 12, 275-281.	1.1	70
26	Forest management effects on carabid beetle communities in coniferous and broadleaved forests: implications for conservation. Insect Conservation and Diversity, 2008, 1, 242-252.	1.4	69
27	Varying responses of insect herbivores to altered plant chemistry under organic and conventional treatments. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 779-786.	1.2	64
28	Fertilisers and insect herbivores: a metaâ€analysis. Annals of Applied Biology, 2012, 161, 223-233.	1.3	64
29	The effects of host plant on the coccinellid functional response: Is the conifer specialist Aphidecta obliterata (L.) (Coleoptera: Coccinellidae) better adapted to spruce than the generalist Adalia bipunctata (L.) (Coleoptera: Coccinellidae)?. Biological Control, 2008, 47, 273-281.	1.4	61
30	Urban biodiversity: comparison of insect assemblages on native and non-native trees. Urban Ecosystems, 2012, 15, 611-624.	1.1	59
31	Aggregation, habitat quality and coexistence: a case study on carrion fly communities in slug cadavers. Journal of Animal Ecology, 2002, 71, 131-140.	1.3	58
32	The effect of host-plant and delayed mating on the fecundity and lifespan of the pine beauty moth, $\langle i \rangle$ Panolis flammea $\langle i \rangle$ (Denis & Denis & Chifferm $\tilde{A}\frac{1}{4}$ ller) (Lepidoptera: Noctuidae): their influence on population dynamics and relevance to pest management. Bulletin of Entomological Research, 1985, 75, 641-651.	0.5	57
33	Secondary host preferences and reproductive activity of the bird cherryâ€oat aphid, ⟨i⟩Rhopalosiphum padi⟨/i⟩. Annals of Applied Biology, 1982, 101, 219-228.	1.3	53
34	The effect of adult feeding on the fecundity, weight loss and survival of the pine beauty moth, Panolis flammea (D&S). Oecologia, 1984, 65, 70-74.	0.9	53
35	Effects of extreme, fluctuating temperature events on life history traits of the grain aphid, <i><scp>S</scp>itobion avenae</i> . Entomologia Experimentalis Et Applicata, 2014, 150, 240-249.	0.7	50
36	<i>Egg survival in the bird cherryâ€oat aphid</i> , Rhopalosiphum padi. Entomologia Experimentalis Et Applicata, 1980, 27, 96-97.	0.7	48

3

#	Article	IF	Citations
37	How good are carabid beetles (Coleoptera, Carabidae) as indicators of invertebrate abundance and order richness?. Biodiversity and Conservation, 2012, 21, 763-779.	1.2	48
38	Avoidance responses of an aphidophagous ladybird, <i>Adalia bipunctata</i> , to aphidâ€ŧending ants. Ecological Entomology, 2008, 33, 523-528.	1.1	46
39	Growth, survival and reproduction of the birdâ€cherry aphid, <i>Rhopalosiphum padi</i> , on its primary host. Annals of Applied Biology, 1981, 99, 115-118.	1.3	45
40	Pine monoterpenes stimulate oviposition in the pine beauty moth, <i>Panolis flammea</i> Experimentalis Et Applicata, 1987, 43, 295-297.	0.7	44
41	Macroevolutionary patterns in the origin of mutualisms involving ants. Journal of Evolutionary Biology, 2008, 21, 1597-1608.	0.8	44
42	Temperature prediction and the timing of sex in aphids. Oecologia, 1984, 62, 230-233.	0.9	43
43	The effect of previous defoliation of pole-stage lodgepole pine on plant chemistry, and on the growth and survival of pine beauty moth (Panolis flammea) larvae. Oecologia, 1991, 86, 31-35.	0.9	42
44	Overwintering in six arable aphid pests: a review with particular relevance to pest management. Journal of Applied Entomology, 1993, 116, 217-233.	0.8	41
45	Tritrophic effects of organic and conventional fertilisers on a cerealâ€aphidâ€parasitoid system. Entomologia Experimentalis Et Applicata, 2010, 134, 211-219.	0.7	38
46	Structure and abundance of arachnid communities in Scots and lodgepole pine plantations. Forest Ecology and Management, 1997, 95, 197-207.	1.4	37
47	Title is missing!. Experimental and Applied Acarology, 1997, 21, 523-538.	0.7	36
48	Ant semiochemicals limit apterous aphid dispersal. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 3127-3131.	1.2	36
49	Insect conservation: finding the way forward. Insect Conservation and Diversity, 2008, 1, 67-69.	1.4	36
50	Nitrogen fertiliser affects the functional response and prey consumption of <i>Harmonia axyridis </i> Coleoptera: Coccinellidae) feeding on cereal aphids. Annals of Applied Biology, 2012, 160, 6-15.	1.3	35
51	OVARIOLE NUMBER AND FECUNDITY IN APHIDS. Entomologia Experimentalis Et Applicata, 1981, 30, 128-133.	0.7	34
52	Prunus Padus L Journal of Ecology, 1996, 84, 125.	1.9	34
53	The role of generalist insect predators and pathogens in suppressing green spruce aphid populations through direct mortality and mediation of aphid dropping behavior. Biological Control, 2006, 38, 233-246.	1.4	34
54	Spotlight on insects: trends, threats and conservation challenges. Insect Conservation and Diversity, 2020, 13, 99-102.	1.4	34

#	Article	IF	Citations
55	The Pine Beauty in Scottish Lodgepole Pine Plantations. , 1988, , 243-266.		34
56	Sub-lethal plant defences: the paradox remains. Oecologia, 1993, 93, 153-155.	0.9	33
57	Oviposition responses to patch quality in the larch ladybird Aphidecta obliterata (Coleoptera:) Tj ETQq1 1 0.7843 Research, 2006, 96, 25-34.	314 rgBT / 0.5	Overlock 10 33
58	Factors affecting pupal survival and eclosion in the pine beauty moth, Panolis flammea (D&S). Oecologia, 1984, 63, 75-79.	0.9	32
59	Feeding Specialisation and Host Distribution of British and Finnish Prunus Feeding Macrolepidoptera. Oikos, 1991, 60, 40.	1.2	32
60	Tolerance traits and the stability of mutualism. Oikos, 2009, 118, 346-352.	1.2	31
61	Do natural enemies really make a difference? Field scale impacts of parasitoid wasps and hoverfly larvae on cereal aphid populations. Agricultural and Forest Entomology, 2017, 19, 139-145.	0.7	31
62	Prey-Mediated Effects of Drought on the Consumption Rates of Coccinellid Predators of Elatobium abietinum. Insects, 2016, 7, 49.	1.0	30
63	Vertical farming systems bring new considerations for pest and disease management. Annals of Applied Biology, 2020, 176, 226-232.	1.3	30
64	<i>Factors affecting egg survival in the bird cherryâ€oat aphid</i> , Rhopalosiphum padi. Entomologia Experimentalis Et Applicata, 1981, 30, 197-199.	0.7	29
65	Fertilizer affects the behaviour and performance of <i>Plutella xylostella </i> on brassicas. Agricultural and Forest Entomology, 2009, 11, 275-282.	0.7	28
66	Plant nutrient supply determines competition between phytophagous insects. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 718-724.	1.2	28
67	Aspects of Aphid Overwintering (Homoptera: Aphidinea: Aphididae). Entomologia Generalis, 1992, 17, 101-113.	1.1	28
68	Research needs in insect conservation and diversity. Insect Conservation and Diversity, 2010, 3, 1-4.	1.4	27
69	Life table parameters and capture success ratio studies of Typhlodromips swirskii (Acari: Phytoseiidae) to the factitious prey Suidasia medanensis (Acari: Suidasidae). Experimental and Applied Acarology, 2013, 61, 69-78.	0.7	27
70	Tritrophic interactions between parasitoids and cereal aphids are mediated by nitrogen fertilizer. Insect Science, 2015, 22, 813-820.	1.5	27
71	Differential rates of invasion in three related alien oak gall wasps (Cynipidae: Hymenoptera). Diversity and Distributions, 2002, 8, 335-349.	1.9	26
72	Do shifting baselines in natural history knowledge threaten the environment?. The Environmentalist, 2010, 30, 1-2.	0.7	26

#	Article	IF	CITATIONS
73	Are differences in life history parameters of the pine beauty moth Panolis flammea modified by host plant quality or gender?. Entomologia Experimentalis Et Applicata, 1998, 87, 237-243.	0.7	25
74	Recognition and avoidance of insecticide-treated Scots Pine (Pinus sylvestris) by Hylobius abietis (Coleoptera: Curculionidae): implications for pest management strategies. Agricultural and Forest Entomology, 2005, 7, 187-191.	0.7	25
75	Virulence of <i>Verticillium lecanii</i> (Z.) against cereal aphids; does timing of infection affect the performance of parasitoids and predators? Pest Management Science, 2013, 69, 493-498.	1.7	25
76	Responses of the twoâ€spotted oak buprestid, <i>Agrilus biguttatus</i> (Coleoptera: Buprestidae), to host tree volatiles. Pest Management Science, 2016, 72, 845-851.	1.7	25
77	The effect of nutrient stress on life history parameters of the black bean aphid, Aphis fabae scop. Oecologia, 1983, 57, 156-157.	0.9	24
78	Where would Darwin have been without taxonomy?. Journal of Biological Education, 2009, 43, 51-52.	0.8	24
79	The impact of the aphids Tuberolachnus salignus and Pterocomma salicis on willow trees. Annals of Applied Biology, 2001, 138, 133-140.	1.3	23
80	Invertebrate predators drive distanceâ€dependent patterns of seedling mortality in a temperate tree <i>Acer pseudoplatanus</i> . Oikos, 2008, 117, 521-530.	1.2	23
81	Seeing the trees for the wood – beech (<i>Fagus sylvatica</i>) decay fungal volatiles influence the structure of saproxylic beetle communities. Insect Conservation and Diversity, 2014, 7, 314-326.	1.4	23
82	Compatibility of Amblyseius swirskii with Beauveria bassiana: two potentially complimentary biocontrol agents. BioControl, 2016, 61, 437-447.	0.9	23
83	DO GYNOPARAE AND MALES NEED TO FEED? AN ATTEMPT TO ALLOCATE RESOURCES IN THE BIRD CHERRYâ€OA APHID <i>RHOPALOSIPHUM PADI</i> . Entomologia Experimentalis Et Applicata, 1982, 31, 386-390.	Г _{О.7}	22
84	Host monitoring by aphid migrants: do gynoparae maximise offspring fitness?. Oecologia, 1986, 68, 367-369.	0.9	22
85	Organic and conventional fertilizer effects on a tritrophic interaction: parasitism, performance and preference of Cotesia vestalis. Journal of Applied Entomology, 2011, 135, 658-665.	0.8	22
86	Institutional vertebratism hampers insect conservation generally; not just saproxylic beetle conservation. Animal Conservation, 2013, 16, 379-380.	1.5	22
87	The lifecycle of <i>Agrilus biguttatus</i> : the role of temperature in its development and distribution, and implications for Acute Oak Decline. Agricultural and Forest Entomology, 2018, 20, 334-346.	0.7	22
88	Institutional vertebratism threatens UK food security. Trends in Ecology and Evolution, 2009, 24, 413-414.	4.2	21
89	Circle the bandwagons – challenges mount against the theoretical foundations of applied functional trait and ecosystem service research. Insect Conservation and Diversity, 2016, 9, 1-3.	1.4	21
90	Effect of temperature on fecundity and development of the Giant Willow Aphid, Tuberolachnus salignus (Sternorrhyncha: Aphididae). European Journal of Entomology, 2001, 98, 177-182.	1.2	21

#	Article	IF	Citations
91	Herbivory, phenology, morphology and the expression of sex in trees: who is in the driver's seat?. Oikos, 2000, 90, 194-196.	1.2	20
92	Precise knowledge of plant growth stages enhances applied and pure research. Annals of Applied Biology, 2010, 157, 159-161.	1.3	20
93	Behavioural avoidance and enhanced dispersal in neonicotinoid-resistant <i>Myzus persicae</i> (Sulzer). Pest Management Science, 2014, 70, 88-96.	1.7	20
94	Phenological responses in a sycamore–aphid–parasitoid system and consequences for aphid population dynamics: A 20Âyear case study. Global Change Biology, 2020, 26, 2814-2828.	4.2	20
95	Methods for Sampling Termites., 0,, 221-253.		19
96	Polyphagy, flightlessness, and reproductive output of females: a case study with bagworms (Lepidoptera: Psychidae). Ecological Entomology, 2008, 33, 663-672.	1.1	19
97	Variation in the abundance of invertebrate predators of the green spruce aphid Elatobium abietinum (Walker) (Homoptera: Aphididae) along an altitudinal transect. Forest Ecology and Management, 2009, 258, 1-10.	1.4	19
98	Effects of organic and conventional fertilizer treatments on host selection by the aphid parasitoid <i>Diaeretiella rapae</i> . Journal of Applied Entomology, 2012, 136, 445-455.	0.8	19
99	The utility of distribution data in predicting phenology. Methods in Ecology and Evolution, 2013, 4, 1024-1032.	2.2	19
100	Frequency and intensity of drought stress alters the population size and dynamics of <i>Elatobium abietinum</i> on Sitka spruce. Annals of Applied Biology, 2014, 165, 260-269.	1.3	19
101	The effect of temperature on oviposition, fecundity and egg hatch in the pine beauty moth, <i>Panolis flammea</i> (Lepidoptera: Noctuidae). Bulletin of Entomological Research, 1994, 84, 515-520.	0.5	18
102	Host selection and performance of the giant willow aphid, Tuberolachnus salignus Gmelin implications for pest management. Agricultural and Forest Entomology, 2001, 3, 183-189.	0.7	18
103	Sampling Methods for Water-Filled Tree Holes and Their Artificial Analogues. , 0, , 168-185.		18
104	Large reorganizations in butterfly communities during an extreme weather event. Ecography, 2017, 40, 577-585.	2.1	18
105	The Influence of Soil Type and Pine Species on the Carabid Community of a Plantation Forest with a History of Pine Beauty Moth Infestation. Forestry, 1993, 66, 135-146.	1.2	17
106	Ant-mediated dispersal of the black willow aphid Pterocomma salicis L.; does the ant Lasius niger L. judge aphid-host quality?. Ecological Entomology, 2002, 27, 238-241.	1.1	17
107	RESISTANCE TO DIEBACK DISEASE CAUSED BY <i>FUSARIUM </i> AND <i>LASIODIPLODIA </i> SPECIES IN CACAO (<i>THEOBROMA CACAO </i> L.) GENOTYPES. Experimental Agriculture, 2012, 48, 85-98.	0.4	17
108	Effect of plant nutrition on aphid size, prey consumption, and life history characteristics of green lacewing. Insect Science, 2014, 21, 74-82.	1.5	17

#	Article	IF	CITATIONS
109	Season and drought stress mediate growth and weight of the green spruce aphid on Sitka spruce. Agricultural and Forest Entomology, 2015, 17, 48-56.	0.7	17
110	Does the bird cherry have its â€ ⁻ fair share' of insect pests? An appraisal of the species—area relationships of the phytophagous insects associated with British Prunus species. Ecological Entomology, 1985, 10, 43-56.	1.1	16
111	Variation in ovariole number within the Aphidoidea. Journal of Natural History, 1988, 22, 381-393.	0.2	16
112	Within-tree and seasonal distribution of the pine woolly aphid Pineus boerneri on Pinus kesiya trees. Agricultural and Forest Entomology, 2001, 3, 139-145.	0.7	16
113	Does variation in offspring size reflect strength of preference performance index in herbivorous insects?. Oikos, 2002, 96, 192-195.	1.2	16
114	The effects of organic and conventional fertilizers on cereal aphids and their natural enemies. Agricultural and Forest Entomology, 2010, 12, 307-318.	0.7	16
115	The effect of past natural enemy activity on hostâ€plant preference of two aphid species. Entomologia Experimentalis Et Applicata, 2012, 144, 216-222.	0.7	16
116	Opposing effects of organic and conventional fertilizers on the performance of a generalist and a specialist aphid species. Agricultural and Forest Entomology, 2012, 14, 270-275.	0.7	16
117	Development of an integrated approach to control of pine beauty moth in Scotland. Forest Ecology and Management, 1991, 39, 19-28.	1.4	15
118	Heathland management effects on carabid beetle communities: the relationship between bare ground patch size and carabid biodiversity. Journal of Insect Conservation, 2012, 16, 523-535.	0.8	15
119	Damage by Zeiraphera diniana (Lepidoptera: Tortricidae) to lodgepole pine (Pinus contorta) of various provenances. Forest Ecology and Management, 1991, 44, 133-145.	1.4	14
120	The history and control of the pine beauty moth, Panolis flammea (D. & S.) (Lepidoptera: Noctuidae), in Scotland from 1976 to 2000. Agricultural and Forest Entomology, 2001, 3, 161-168.	0.7	14
121	Asynchrony in larval development of the pine beauty moth, Panolis flammea, on an introduced host plant may affect parasitoid efficacy. Arthropod-Plant Interactions, 2007, 1, 213-220.	0.5	14
122	Atmospheric humidity and aphid reproduction. Zeitschrift FÃ $\frac{1}{4}$ r Angewandte Entomologie, 1985, 100, 510-513.	0.0	14
123	Influential entomology: a short review of the scientific, societal, economic and educational services provided by entomology. Ecological Entomology, 2015, 40, 36-44.	1.1	14
124	Plant essential oils: the way forward for aphid control?. Annals of Applied Biology, 2018, 173, 175-179.	1.3	14
125	The influence of natural enemies and migration on spring populations of the green spruce aphid, <i>Elatobium abietinum</i> Walker (Hom., Aphididae). Journal of Applied Entomology, 1996, 120, 529-536.	0.8	13
126	Influence of management type on Diptera communities of coniferous plantations and deciduous woodlands. Agriculture, Ecosystems and Environment, 2003, 95, 443-452.	2.5	13

#	Article	IF	Citations
127	The functional and numerical response of Typhlodromips swirskii (Acari: Phytoseiidae) to the factitious prey Suidasia medanensis (Acari: Suidasidae) in the context of a breeding sachet. Biocontrol Science and Technology, 2014, 24, 361-374.	0.5	13
128	Drought intensity and frequency have contrasting effects on development time and survival of the green spruce aphid. Agricultural and Forest Entomology, 2015, 17, 309-316.	0.7	13
129	Reproduction of an arboreal aphid pest, <i><scp>E</scp>latobium abietinum</i> , is altered under drought stress. Journal of Applied Entomology, 2015, 139, 302-313.	0.8	13
130	Changing management in Scottish birch woodlands: a potential threat to local invertebrate biodiversity. Bulletin of Entomological Research, 2003, 93, 159-167.	0.5	12
131	Magic Roundabouts? Teaching conservation in schools and universities. Journal of Biological Education, 2005, 39, 102-107.	0.8	12
132	Ladybird egg cluster size: relationships between species, oviposition substrate and cannibalism. Bulletin of Entomological Research, 2007, 97, 613-618.	0.5	12
133	When are ant-attractant devices a worthwhile investment? Vicia faba extrafloral nectaries and Lasius niger ants. Population Ecology, 2007, 49, 265-273.	0.7	12
134	Agri-environmental measures and the breeding ecology of a declining farmland bird. Biological Conservation, 2017, 212, 230-239.	1.9	12
135	Early Season Defoliation of Bird Cherry Influences Autumn Colonization by the Bird Cherry Aphid, Rhopalosiphum padi. Oikos, 1993, 66, 43.	1.2	11
136	Ant Larval Demand Reduces Aphid Colony Growth Rates in an Ant-Aphid Interaction. Insects, 2012, 3, 120-130.	1.0	11
137	Predator mortality depends on whether its prey feeds on organic or conventionally fertilised plants. Biological Control, 2012, 63, 56-61.	1.4	11
138	Conservation potential for heathland carabid beetle fauna of linear trackways within a plantation forest. Insect Conservation and Diversity, 2013, 6, 300-308.	1.4	11
139	Bringing ecology blogging into the scientific fold: measuring reach and impact of science community blogs. Royal Society Open Science, 2017, 4, 170957.	1.1	11
140	The case for the passive voice. Nature, 1996, 381, 467-467.	13.7	10
141	The effect of constitutive resistance in lodgepole pine (<i>Pinus contorta</i>) and Scots pine (<i>P.) Tj ETQq1 1 1997, 87, 81-88.</i>	0.784314 0.5	rgBT /Overlo
142	Arthropod diversity and the future of allâ€ŧaxa inventories. Insect Conservation and Diversity, 2013, 6, 1-4.	1.4	10
143	How to avoid the top ten pitfalls in insect conservation and diversity research and minimise your chances of manuscript rejection. Insect Conservation and Diversity, 2014, 7, 1-3.	1.4	10
144	Agri-Environment Scheme Habitat Preferences of Yellowhammer <i>Emberiza citrinella</i> on English Farmland. Acta Ornithologica, 2016, 51, 199-209.	0.1	10

9

#	Article	IF	CITATIONS
145	Don't be a zeroâ€sum reviewer. Insect Conservation and Diversity, 2017, 10, 1-4.	1.4	10
146	<i>Evidence of ovulation after adult moult in the bird cherryâ€oat aphid</i> , Rhopalosiphum padi. Entomologia Experimentalis Et Applicata, 1983, 33, 348-349.	0.7	9
147	Resistance to foliage-feeding insects in conifers: implications for pest management. Integrated Pest Management Reviews, 1996, 1, 163-180.	0.1	9
148	Numerical abundance of invasive ants and monopolisation of exudateâ€producing resources – a chicken and egg situation. Insect Conservation and Diversity, 2008, 1, 208-214.	1.4	9
149	Changing dynamics of the pine beauty moth (<i>Panolis flammea</i>) in Britain: the loss of enemy free space?. Agricultural and Forest Entomology, 2008, 10, 263-271.	0.7	9
150	Forecasting aphid outbreaks using winter egg counts: An assessment of its feasibility and an example of its application in Finland. Zeitschrift FÃ $\frac{1}{4}$ r Angewandte Entomologie, 1983, 96, 282-287.	0.0	9
151	Spatio-temporal factors influencing the occurrence of Syngamus trachea within release pens in the South West of England. Veterinary Parasitology, 2015, 207, 64-71.	0.7	9
152	Body condition is negatively associated with infection with Syngamus trachea in the ring-necked pheasant (Phasianus colchicus). Veterinary Parasitology, 2016, 228, 1-5.	0.7	9
153	An entomocentric view of the Janzen–Connell hypothesis. Insect Conservation and Diversity, 2019, 12, 1-8.	1.4	9
154	Plant quality, progeny sequence, and the sex ratio of the sycamore aphid, Drepanosiphum platanoidis. Entomologia Experimentalis Et Applicata, 2005, 115, 311-321.	0.7	8
155	Development and optimisation of a sex pheromone lure for monitoring populations of saddle gall midge, <i><scp>H</scp>aplodiplosis marginata</i> Entomologia Experimentalis Et Applicata, 2017, 163, 82-92.	0.7	8
156	Without upâ€toâ€date pest thresholds sustainable agriculture is nothing but a pipeâ€dream. Agricultural and Forest Entomology, 2017, 19, 341-343.	0.7	8
157	Overseas Conservation Education and research: the new colonialism?. Journal of Biological Education, 2021, 55, 569-574.	0.8	8
158	The effect of neonatal starvation on the growth, development and survival of larvae of the pine beauty moth, Panolis flammea (D & S). Oecologia, 1986, 71, 90-93.	0.9	7
159	Consumers and Plant Fitness: Coevolution or Competition?. Oikos, 1988, 53, 285.	1.2	7
160	Influence of site factor modification on the population development of the pine beauty moth (Panolis) Tj ETQq0 C 1993, 59, 207-223.	0 o rgBT /0 1.4	Overlock 10 7 7
161	Effects of Different Calcium Concentrations Supplemented on the Diet of <i>Partula gibba </i> on their Morphometric Growth Parameters, Weight and Reproduction Success. Malacologia, 2011, 54, 139-146.	0.2	7
162	Floral resources, pollinators and fruiting in a threatened tropical deciduous tree. Journal of Plant Ecology, 2011, 4, 259-267.	1.2	7

#	Article	IF	CITATIONS
163	Outbreaks of the pine beauty moth on pine in Scotland: Influence of host plant species and site factors. Forest Ecology and Management, 1991, 39, 211-221.	1.4	6
164	Feeding behaviour of the black pine beetle, Hylastes ater (Coleoptera: Scolytidae). Agricultural and Forest Entomology, 2007, 9, 115-124.	0.7	6
165	Visions for insect conservation and diversity: spanning the gap between practice and theory. Insect Conservation and Diversity, 2009, 2, 1-4.	1.4	6
166	Response to Sinkkonen: Ultraviolet reflectance in autumn leaves and the un-naming of colours. Trends in Ecology and Evolution, 2009, 24, 237-238.	4.2	6
167	Population genetics of <i>Tuberolachnus salignus</i> , an obligate parthenogenetic aphid. Agricultural and Forest Entomology, 2012, 14, 197-205.	0.7	6
168	<i>Project <scp>MOSI</scp></i> : rationale and pilotâ€study results of an initiative to help protect zoo animals from mosquitoâ€transmitted pathogens and contribute data on mosquito spatioâ€"temporal distribution change. International Zoo Yearbook, 2015, 49, 172-188.	1.0	6
169	Spatial distribution of infectious stages of the nematode Syngamus trachea within pheasant () Tj ETQq1 1 0.7843 dependence?. Veterinary Parasitology, 2015, 212, 267-274.	14 rgBT /0 0.7	Overlock 10 6
170	An astigmatid defence volatile against a phytoseiid mite. Entomologia Experimentalis Et Applicata, 2016, 158, 97-107.	0.7	6
171	The influence of lodgepole pine (Pinus contorta) provenance on the development and survival of larvae of the pine beauty moth Panolis flammea (Lepidoptera: Noctuidae). Bulletin of Entomological Research, 1997, 87, 75-80.	0.5	5
172	Variation in the suitability of Pinus contorta (lodgepole pine) to feeding by three pine defoliators, Panolis flammea, Neodiprion sertifer and Zeiraphera diniana. Journal of Applied Entomology, 2000, 124, 11-17.	0.8	5
173	Sampling Insects from Roots. , 0, , 16-36.		5
174	Insect Conservation and Diversity $\hat{a} \in \hat{a}$ a new journal for the Royal Entomological Society. Insect Conservation and Diversity, 2008, 1, 1-1.	1.4	5
175	Cannibalism in the pea aphid, <i>Acyrthosiphon pisum</i> li>. Insect Science, 2014, 21, 750-758.	1.5	5
176	Density-dependent regulation of fecundity in <i>Syngamus trachea</i> infrapopulations in semi-naturally occurring ring-necked pheasants (<i>Phasianus colchicus</i>) and wild Carrion Crows (<i>Corvus corone</i>). Parasitology, 2016, 143, 716-722.	0.7	5
177	The diet of Eurasian Tree Sparrow Passer montanus nestlings in relation to agri-environment scheme habitats. Bird Study, 2016, 63, 279-283.	0.4	5
178	Mind the gap: time to make sure that scientists and practitioners are on the same page. Annals of Applied Biology, 2017, 170, 1-3.	1.3	5
179	Monomorium ant is a carrier for pathogenic and potentially pathogenic bacteria. BMC Research Notes, 2019, 12, 230.	0.6	5
180	Life span and ovarian dynamics of the pine beauty moth, Panolis flammea (D&S): the effect of low temperatures after adult emergence on reproductive success. Physiological Entomology, 1990, 15, 347-353.	0.6	4

#	Article	IF	CITATIONS
181	Sampling Theory and Practice., 0,, 1-15.		4
182	How do the consumption and development rates of the conifer specialist <i>Aphidecta obliterata </i> respond to temperature, and is it better adapted to limited prey than a generalist?. Annals of Applied Biology, 2008, 153, 63-71.	1.3	4
183	The centenary of <i>Annals of Applied Biology </i> ii 2014. Annals of Applied Biology, 2014, 164, 1-7.	1.3	4
184	Current and Future Insect Threats to UK Forestry. Outlooks on Pest Management, 2014, 25, 22-24.	0.1	4
185	A review of the biology, ecology and control of saddle gall midge, <i>Haplodiplosis marginata < /i> (Diptera: Cecidomyiidae) with a focus on phenological forecasting. Annals of Applied Biology, 2016, 169, 167-179.</i>	1.3	4
186	Factors affecting trap catch in pheromoneâ€based monitoring of saddle gall midge <i>Haplodiplosis marginata</i> (Diptera: Cecidomyiidae). Pest Management Science, 2018, 74, 406-412.	1.7	4
187	Host-plant selection by phytophagous insects. By E.A. Bernays and R.F. Chapman. (London: Chapman and) Tj ETQo Entomological Research, 1994, 84, 591-592.	q1 1 0.784 0.5	1314 rgBT /(3
188	Onwards and upwards – aphid flight trends follow climate change. Journal of Animal Ecology, 2015, 84, 1-3.	1.3	3
189	A 5-year vision for <i>Annals of Applied Biology</i> . Annals of Applied Biology, 2016, 168, 1-1.	1.3	3
190	Degree-day based phenological forecasting model of saddle gall midge (Haplodiplosis marginata) (Diptera: Cecidomyiidae) emergence. Crop Protection, 2017, 102, 154-160.	1.0	3
191	Postâ€spray effects of an aerial application of fenitrothion on the pine beauty moth,Panolis flammea(Denis & Schiffermýller). International Journal of Pest Management, 1995, 41, 123-126.	0.9	2
192	Reinventing the wheelâ€"on the dangers of taxon parochialism and shallow reference trawling!. Basic and Applied Ecology, 2004, 5, 309-311.	1.2	2
193	Insect Conservation and Diversity- making an impact. Insect Conservation and Diversity, 2011, 4, 1-1.	1.4	2
194	What attracts aphids–ÂKennedy, Booth and Kershaw (1961): host finding by aphids in the field <scp>Ill</scp> . Visual attraction–Âa top 20 paper in the <i>Annals of Applied Biology</i> . Annals of Applied Biology, 2014, 165, 1-2.	1.3	2
195	Expanding horizons and widening participation in Insect Conservation and Diversity. Insect Conservation and Diversity, 2015, 8, 1-2.	1.4	2
196	Another look at plant defences against insect herbivores: plant parts that pretend to be insects. Agricultural and Forest Entomology, 2017, 19, 1-3.	0.7	2
197	PCR-based gut content analysis to identify arthropod predators of Haplodiplosis marginata. Biological Control, 2017, 115, 112-118.	1.4	2
198	Three years in: How is the 5â€year plan doing?. Annals of Applied Biology, 2019, 174, 1-2.	1.3	2

#	Article	IF	CITATIONS
199	Changing fortunes at the <i>Annals of Applied Biology</i> . Annals of Applied Biology, 2019, 175, 253-253.	1.3	2
200	Abundance and phenology of two pest species, Cacoecimorpha pronubana and Epiphyas postvittana (Lepidoptera: Tortricidae). Annals of Applied Biology, 2021, 179, 207-215.	1.3	2
201	Effect of host plant on the life history of the carnation tortrix moth <i>Cacoecimorpha pronubana</i> (Lepidoptera: Tortricidae). Bulletin of Entomological Research, 2022, 112, 44-50.	0.5	2
202	Excellence in ecological entomology - The Royal Entomological Society's Awards for Scientific Writing. Ecological Entomology, 2002, 27, 513-513.	1.1	1
203	Sampling Devices and Sampling Design for Aquatic Insects. , 0, , 186-220.		1
204	Conservation entomology in crisis?. Trends in Ecology and Evolution, 2008, 23, 184-185.	4.2	1
205	Anthropogenic Influences on Wild Nutmeg Fruit Crop in the Western Ghats of India. Journal of Sustainable Forestry, 2012, 31, 563-575.	0.6	1
206	Habitat richness and tree species richness of roundabouts: effects on site selection and the prevalence of arboreal caterpillars. Urban Ecosystems, 2017, 20, 889-895.	1.1	1
207	Relationships between tree sparrow Passer montanus fledging success and the quantity and quality of agricultural habitats – A model comparison study. Ecological Informatics, 2018, 47, 73-76.	2.3	1
208	Interannual population dynamics of the green spruce aphid Elatobium abietinum (Walker) in France. Annals of Applied Biology, 2020, 176, 233-240.	1.3	1
209	Novel dendrochronological modelling demonstrates that decades of reduced stem growth predispose trees to Acute Oak Decline. Forest Ecology and Management, 2020, 476, 118441.	1.4	1
210	Invertebrate predators drive distance-dependent patterns of seedling mortality in a temperate tree Acer pseudoplatanus. Oikos, 2008, .	1.2	1
211	How Stephen Jay Gould wrote MacbethNot giving credit where it's due: lazy referencing and ignoring precedence. Ideas in Ecology and Evolution, 0, 7, .	0.1	1
212	Linking agriâ€environment scheme habitat area, predation and the abundance of chick invertebrate prey to the nesting success of a declining farmland bird. Ecological Solutions and Evidence, 2022, 3, .	0.8	1
213	Ecology and management of forest insects. Trends in Ecology and Evolution, 1990, 5, 168-169.	4.2	O
214	The evolution of life histories. <i>Theories and analysis</i> By Derek A. Roff. (London: Chapman and) Tj ETQq0 0 0 83, 657-658.	0 rgBT /O 0.5	verlock 10 Tf 0
215	Analyses in insect ecology and management. By Larry Pedigo and Michael R. Zeiss (Iowa; Iowa State) Tj ETQq1 1 C Entomological Research, 1997, 87, 219-220.).784314 0.5	rgBT /Overlo O
216	Biological control of social forest and plantation crop insects. Crop Protection, 1997, 16, 291-292.	1.0	0

#	Article	IF	CITATIONS
217	Ecological Entomology - leading ecology into the 21st Century? Twenty-five years of excellence in perspective. Ecological Entomology, 2000, 25, 371-373.	1.1	0
218	The natural home for agricultural entomologists?. Annals of Applied Biology, 2012, 161, 1-2.	1.3	0
219	Modifying glucosinolates in oilseed rape–ÂGiamoustaris & Mithen (1995): a topâ€ŧwenty paper in the <i>Annals of Applied Biology</i> . Annals of Applied Biology, 2014, 164, 318-319.	1.3	0
220	The Last Butterflies: A Scientist's Quest to Save a Rare and Vanishing Creature by Nick Haddad (2019) 264 pp., Pinceton University Press, Princeton, USA. ISBN 978-0-691-16500-4 (hbk), USD 24.95/GBP 22.00 Oryx, 2020, 54, 286-286.	0.5	0
221	Transgenerational effect of host plant on growth and reproduction in two species of moth, Cacoecimorpha pronubana and Epiphyas postvittana (Lepidoptera: Tortricidae). Annals of Applied Biology, 0, , .	1.3	0