Mihail Ipatov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8620945/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Thin Magnetically Soft Wires for Magnetic Microsensors. Sensors, 2009, 9, 9216-9240.	2.1	150
2	Highly sensitive magnetometer based on the offâ€diagonal GMI effect in Coâ€rich glassâ€coated microwire. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 980-985.	0.8	94
3	Low-field hysteresis in the magnetoimpedance of amorphous microwires. Physical Review B, 2010, 81, .	1.1	90
4	Giant magnetoimpedance in thin amorphous wires: From manipulation of magnetic field dependence to industrial applications. Journal of Alloys and Compounds, 2014, 586, S279-S286.	2.8	83
5	Trends in optimization of giant magnetoimpedance effect in amorphous and nanocrystalline materials. Journal of Alloys and Compounds, 2017, 727, 887-901.	2.8	81
6	Co-based magnetic microwire and field-tunable multifunctional macro-composites. Journal of Non-Crystalline Solids, 2009, 355, 1380-1386.	1.5	77
7	Magnetic properties and magnetocaloric effect in Heusler-type glass-coated NiMnGa microwires. Journal of Alloys and Compounds, 2013, 575, 73-79.	2.8	76
8	Manipulation of domain wall dynamics in amorphous microwires through the magnetoelastic anisotropy. Nanoscale Research Letters, 2012, 7, 223.	3.1	75
9	Tailoring of magnetic properties and GMI effect of Co-rich amorphous microwires by heat treatment. Journal of Alloys and Compounds, 2014, 615, 610-615.	2.8	70
10	Exceptional electromagnetic interference shielding properties of ferromagnetic microwires enabled polymer composites. Journal of Applied Physics, 2010, 108, .	1.1	69
11	Tailoring of magnetoimpedance effect and magnetic softness of Fe-rich glass-coated microwires by stress- annealing. Scientific Reports, 2018, 8, 3202.	1.6	69
12	Manipulation of magnetic properties of glass-coated microwires by annealing. Journal of Magnetism and Magnetic Materials, 2015, 383, 232-236.	1.0	67
13	Effect of transverse magnetic field on domain wall propagation in magnetically bistable glass-coated amorphous microwires. Journal of Applied Physics, 2009, 106, .	1.1	65
14	Mechanisms of the ultrafast magnetization switching in bistable amorphous microwires. Journal of Applied Physics, 2009, 106, .	1.1	65
15	Domain wall propagation in micrometric wires: Limits of single domain wall regime. Journal of Applied Physics, 2012, 111, .	1.1	65
16	Engineering of magnetic softness and giant magnetoimpedance effect in Fe-rich microwires by stress-annealing. Scripta Materialia, 2018, 142, 10-14.	2.6	65
17	Correlation of Crystalline Structure with Magnetic and Transport Properties of Glass-Coated Microwires. Crystals, 2017, 7, 41.	1.0	64
18	Magnetostriction of Co–Fe-Based Amorphous Soft Magnetic Microwires. Journal of Electronic Materials, 2016, 45, 226-234.	1.0	63

#	Article	IF	CITATIONS
19	Fast magnetic domain wall in magnetic microwires. Physical Review B, 2006, 74, .	1.1	62
20	Ground state magnetization distribution and characteristic width of head to head domain wall in Feâ€rich amorphous microwire. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 613-617.	0.8	61
21	Tailoring the High-Frequency Giant Magnetoimpedance Effect of Amorphous Co-Rich Microwires. IEEE Magnetics Letters, 2015, 6, 1-4.	0.6	61
22	Magnetoimpedance sensitive to dc bias current in amorphous microwires. Applied Physics Letters, 2010, 97, .	1.5	60
23	Giant magnetoimpedance in rapidly quenched materials. Journal of Alloys and Compounds, 2020, 814, 152225.	2.8	59
24	Advances in Giant Magnetoimpedance of Materials. Handbook of Magnetic Materials, 2015, 24, 139-236.	0.6	55
25	Local nucleation fields of Fe-rich microwires and their dependence on applied stresses. Physica B: Condensed Matter, 2008, 403, 379-381.	1.3	49
26	Novel magnetic microwires-embedded composites for structural health monitoring applications. Journal of Applied Physics, 2010, 107, .	1.1	49
27	Domain wall propagation in Fe-rich amorphous microwires. Physica B: Condensed Matter, 2012, 407, 1442-1445.	1.3	49
28	Soft magnetic microwires for sensor applications. Journal of Magnetism and Magnetic Materials, 2020, 498, 166180.	1.0	49
29	Magnetic field effects in artificial dielectrics with arrays of magnetic wires at microwaves. Journal of Applied Physics, 2011, 109, .	1.1	46
30	Engineering of magnetic properties of Co-rich microwires by joule heating. Intermetallics, 2019, 105, 92-98.	1.8	45
31	Smart composites with embedded magnetic microwire inclusions allowing non-contact stresses and temperature monitoring. Composites Part A: Applied Science and Manufacturing, 2019, 120, 12-20.	3.8	44
32	Grading the magnetic anisotropy and engineering the domain wall dynamics in Fe-rich microwires by stress-annealing. Acta Materialia, 2018, 155, 279-285.	3.8	43
33	Recent advances in studies of magnetically soft amorphous microwires. Journal of Magnetism and Magnetic Materials, 2009, 321, 822-825.	1.0	41
34	Fe-based ferromagnetic microwires enabled meta-composites. Applied Physics Letters, 2013, 103, .	1.5	41
35	Effect of stress annealing on magnetic properties and GMI effect of Co- and Fe-rich microwires. Journal of Alloys and Compounds, 2017, 707, 189-194.	2.8	41
36	Correlation of surface domain structure and magneto-impedance in amorphous microwires. Journal of Applied Physics, 2011, 109, 113924.	1.1	39

#	Article	IF	CITATIONS
37	Optimization of magnetic properties and GMI effect of Thin Co-rich Microwires for GMI Microsensors. Sensors, 2020, 20, 1558.	2.1	39
38	Development of Magnetic Microwires for Magnetic Sensor Applications. Sensors, 2019, 19, 4767.	2.1	37
39	AC-current-induced magnetization switching in amorphous microwires. Frontiers of Physics, 2018, 13, 1.	2.4	36
40	Novel Fe-based amorphous and nanocrystalline powder cores for high-frequency power conversion. Journal of Magnetism and Magnetic Materials, 2020, 501, 166457.	1.0	36
41	Optimization of the giant magnetoimpedance effect of Finemet-type microwires through the nanocrystallization. Journal of Applied Physics, 2014, 115, .	1.1	35
42	Engineering of magnetic properties and GMI effect in Co-rich amorphous microwires. Journal of Alloys and Compounds, 2016, 664, 235-241.	2.8	35
43	Review of Domain Wall Dynamics Engineering in Magnetic Microwires. Nanomaterials, 2020, 10, 2407.	1.9	33
44	Effect of tensile stresses on GMI of Co-rich amorphous microwires. IEEE Transactions on Magnetics, 2005, 41, 3688-3690.	1.2	32
45	Magnetic and transport properties of granular and Heusler-type glass-coated microwires. Journal of Magnetism and Magnetic Materials, 2012, 324, 3558-3562.	1.0	32
46	Tailoring of domain wall dynamics in amorphous microwires by annealing. Journal of Applied Physics, 2013, 113, .	1.1	31
47	Effect of annealing on magnetic properties and magnetostriction coefficient of Fe–Ni-based amorphous microwires. Journal of Alloys and Compounds, 2015, 651, 718-723.	2.8	31
48	Advanced functional magnetic microwires for technological applications. Journal Physics D: Applied Physics, 2022, 55, 253003.	1.3	31
49	Microwave metamaterials with ferromagnetic microwires. Applied Physics A: Materials Science and Processing, 2011, 103, 653-657.	1.1	30
50	Magnetoelastic contribution in domain wall dynamics of amorphous microwires. Physica B: Condensed Matter, 2012, 407, 1450-1454.	1.3	30
51	Fast magnetization switching in Fe-rich amorphous microwires: Effect of magnetoelastic anisotropy and role of defects. Journal of Alloys and Compounds, 2014, 586, S287-S290.	2.8	30
52	Metacomposite characteristics and their influential factors of polymer composites containing orthogonal ferromagnetic microwire arrays. Journal of Applied Physics, 2014, 115, 173909.	1.1	29
53	Magnetic and structural properties of glass-coated Heusler-type microwires exhibiting martensitic transformation. Scientific Reports, 2018, 8, 621.	1.6	29
54	Engineering of magnetic properties and magnetoimpedance effect in Fe-rich microwires by reversible and irreversible stress-annealing anisotropy. Journal of Alloys and Compounds, 2021, 855, 157460.	2.8	29

#	Article	IF	CITATIONS
55	Effects of wire properties on the field-tunable behaviour of continuous-microwire composites. Sensors and Actuators A: Physical, 2012, 178, 118-125.	2.0	28
56	Studies of Interfacial Layer and Its Effect on Magnetic Properties of Glass-Coated Microwires. Journal of Electronic Materials, 2016, 45, 2381-2387.	1.0	28
57	Engineering of Magnetic Softness and Domain Wall Dynamics of Fe-rich Amorphous Microwires by Stress- induced Magnetic Anisotropy. Scientific Reports, 2019, 9, 12427.	1.6	28
58	Manipulation of domain wall dynamics in amorphous microwires through domain wall collision. Journal of Applied Physics, 2013, 114, .	1.1	27
59	The effect of annealing on magnetic properties of "Thick―microwires. Journal of Alloys and Compounds, 2020, 831, 150992.	2.8	27
60	Studies of magnetic properties of thin microwires with low Curie temperature. Journal of Magnetism and Magnetic Materials, 2006, 300, 16-23.	1.0	26
61	Magnetoimpedance hysteresis in amorphous microwires induced by core–shell interaction. Applied Physics Letters, 2014, 105, .	1.5	26
62	The defects influence on domain wall propagation in bistable glass-coated microwires. Physica B: Condensed Matter, 2012, 407, 1446-1449.	1.3	25
63	Effect of Nanocrystallization on Magnetic Properties and GMI Effect of Fe-rich Microwires. Journal of Electronic Materials, 2014, 43, 4540-4547.	1.0	25
64	Microwires enabled metacomposites towards microwave applications. Journal of Magnetism and Magnetic Materials, 2016, 416, 299-308.	1.0	25
65	Current controlled switching of impedance in magnetic conductor with tilted anisotropy easy axis and its applications. Scientific Reports, 2016, 6, 36180.	1.6	25
66	Fast Magnetization Switching in Thin Wires: Magnetoelastic and Defects Contributions. Sensor Letters, 2013, 11, 170-176.	0.4	25
67	Offâ€diagonal magnetoâ€impedance in amorphous microwires with diameter 6–10 μm and application to linear magnetic sensors. Physica Status Solidi (A) Applications and Materials Science, 2008, 205, 1779-1782.	0.8	24
68	Tailoring of Magnetic Properties of Magnetostatically-Coupled Glass-Covered Magnetic Microwires. Journal of Superconductivity and Novel Magnetism, 2011, 24, 541-547.	0.8	24
69	Engineering of Magnetic Softness and Magnetoimpedance in Fe-Rich Microwires by Nanocrystallization. Jom, 2016, 68, 1563-1571.	0.9	24
70	Route of magnetoimpedance and domain walls dynamics optimization in Co-based microwires. Journal of Alloys and Compounds, 2020, 830, 154576.	2.8	24
71	Soft magnetic amorphous alloys (Fe-rich) obtained by gas atomisation technique. Journal of Alloys and Compounds, 2018, 735, 2646-2652.	2.8	24
72	Development of thin microwires with low Curie temperature for temperature sensors applications. Sensors and Actuators B: Chemical, 2007, 126, 318-323.	4.0	23

#	Article	IF	CITATIONS
73	Influence of the defects on magnetic properties of glass-coated microwires. Journal of Applied Physics, 2014, 115, .	1.1	23
74	Half-metallic Ni2MnSn Heusler alloy prepared by rapid quenching. Journal of Magnetism and Magnetic Materials, 2015, 386, 98-101.	1.0	23
75	Development of ultraâ€ŧhin glassâ€coated amorphous microwires for HF magnetic sensor applications. Physica Status Solidi (A) Applications and Materials Science, 2008, 205, 1367-1372.	0.8	22
76	Stress dependence of the magnetic properties of glass-coated amorphous microwires. Journal of Alloys and Compounds, 2019, 789, 201-208.	2.8	22
77	Stress tunable properties of ferromagnetic microwires and their multifunctional composites. Journal of Applied Physics, 2011, 109, 07A310.	1.1	21
78	Electronic Surveillance and Security Applications of Magnetic Microwires. Chemosensors, 2021, 9, 100.	1.8	21
79	Magnetoresistive and magnetocaloric response of manganite/insulator system. Journal of Alloys and Compounds, 2016, 657, 495-505.	2.8	20
80	Structural and magnetic properties of amorphous and nanocrystalline Fe–Si–B–P–Nb–Cu alloys produced by gas atomization. Journal of Alloys and Compounds, 2019, 810, 151754.	2.8	20
81	Studies of magnetic properties and giant magnetoimpedance effect in ultrathin magnetically soft amorphous microwires. Journal of Applied Physics, 2008, 103, 07E714.	1.1	19
82	Manipulating the magnetoimpedance by dc bias current in amorphous microwire. Journal of Magnetism and Magnetic Materials, 2012, 324, 4078-4083.	1.0	19
83	Magnetic properties of Ni-Mn-In-Co Heusler-type glass-coated microwires. Journal of Applied Physics, 2014, 115, .	1.1	19
84	Effect of nanocrystallization on giant magnetoimpedance effect of Fe-based microwires. Intermetallics, 2014, 51, 59-63.	1.8	19
85	Expanding the longitudinal magnetoimpedance sensor range by direct bias current. Journal of Applied Physics, 2013, 113, .	1.1	18
86	Engineering of domain wall dynamics in amorphous microwires byÂannealing. Journal of Alloys and Compounds, 2017, 707, 35-40.	2.8	18
87	Tailoring of magnetic properties of Heusler-type glass-coated microwires by annealing. Journal of Alloys and Compounds, 2018, 732, 561-566.	2.8	18
88	Magnetic Microwires with Unique Combination of Magnetic Properties Suitable for Various Magnetic Sensor Applications. Sensors, 2020, 20, 7203.	2.1	18
89	Martensitic transformation, magnetic and magnetocaloric properties of Ni–Mn–Fe–Sn Heusler ribbons. Journal of Materials Research and Technology, 2021, 12, 1091-1103.	2.6	18
90	Development of Magnetically Soft Amorphous Microwires for Technological Applications. Chemosensors, 2022, 10, 26.	1.8	18

#	Article	IF	CITATIONS
91	Tuning of Magnetic Properties and GMI Effect of Co-Based Amorphous Microwires by Annealing. Journal of Electronic Materials, 2014, 43, 4532-4539.	1.0	17
92	Effect of stress-induced anisotropy on high frequency magnetoimpedance effect of Fe and Co-rich glass-coated microwires. Journal of Alloys and Compounds, 2018, 735, 1818-1825.	2.8	17
93	From Manipulation of Giant Magnetoimpedance in Thin Wires to Industrial Applications. Journal of Superconductivity and Novel Magnetism, 2013, 26, 1045-1054.	0.8	16
94	Magnetoimpedance dependence on width in Co66.5Fe3.5Si12.0B18.0 amorphous alloy ribbons. Journal of Applied Physics, 2013, 113, 053905.	1.1	16
95	Excellent magnetic properties of (Fe0.7Co0.3)83.7Si4B8P3.6Cu0.7 ribbons and microwires. Intermetallics, 2020, 117, 106660.	1.8	16
96	Domain wall propagation in Fe-rich microwires. Physica B: Condensed Matter, 2008, 403, 382-385.	1.3	15
97	Development of Thin Microwires With Enhanced Magnetic Softness and GMI. IEEE Transactions on Magnetics, 2008, 44, 3958-3961.	1.2	15
98	Smart Composites With Short Ferromagnetic Microwires for Microwave Applications. IEEE Transactions on Magnetics, 2011, 47, 4481-4484.	1.2	15
99	High frequency magnetoimpedance response of stress annealed Co66.3Fe3.7Si12.0B18.0 amorphous alloy ribbons. Journal of Applied Physics, 2013, 114, .	1.1	15
100	Giant magnetoimpedance effect and domain wall dynamics in Co-rich amorphous microwires. Journal of Applied Physics, 2015, 117, .	1.1	15
101	Effect of annealing on magnetic properties of nanocrystalline Hitperm-type glass-coated microwires. Journal of Alloys and Compounds, 2016, 660, 297-303.	2.8	15
102	Magnetic Properties of NdFeB Alloys Obtained by Gas Atomization Technique. IEEE Transactions on Magnetics, 2018, 54, 1-5.	1.2	15
103	Magnetostatic interaction of glass-coated magnetic microwires. Journal of Applied Physics, 2010, 108, 016103.	1.1	14
104	Optimization of Soft Magnetic Properties in Nanocrystalline Fe-Rich Glass-Coated Microwires. Jom, 2015, 67, 2108-2116.	0.9	14
105	Annealing temperature effect on magnetic and magnetocaloric properties of manganites. Journal of Alloys and Compounds, 2016, 665, 394-403.	2.8	14
106	First-order martensitic transformation in Heusler-type glass-coated microwires. Applied Physics Letters, 2017, 111, 242403.	1.5	14
107	Routes for optimization of giant magnetoimpedance effect in magnetic microwires. IEEE Instrumentation and Measurement Magazine, 2020, 23, 56-63.	1.2	14
108	Controlling the domain wall dynamics in Fe-, Ni- and Co-based magnetic microwires. Journal of Alloys and Compounds, 2020, 834, 155170.	2.8	14

#	Article	IF	CITATIONS
109	Effect of Joule heating on giant magnetoimpedance effect and magnetic properties of Co-rich microwires. Journal of Alloys and Compounds, 2021, 883, 160778.	2.8	14
110	Tuning the magnetic properties of NiPS ₃ through organic-ion intercalation. Nanoscale, 2022, 14, 1165-1173.	2.8	14
111	Tunable effective permittivity of composites based onÂferromagnetic microwires with high magneto-impedance effect. Applied Physics A: Materials Science and Processing, 2011, 103, 693-697.	1.1	13
112	Annealing effect on the crystal structure and exchange bias in Heusler Ni45.5Mn43.0In11.5 alloy ribbons. Journal of Alloys and Compounds, 2014, 582, 588-593.	2.8	13
113	Grain size refinement in nanocrystalline Hitperm-type glass-coated microwires. Journal of Magnetism and Magnetic Materials, 2016, 406, 15-21.	1.0	13
114	Effect of cobalt doping on martensitic transformations and the magnetic properties of Ni50â^'xCoxMn37Sn13 (xÂ= 1, 2, 3) Heusler ribbons. Journal of Alloys and Compounds, 2018, 739, 305-310.	2.8	13
115	Magnetic Properties of Annealed Amorphous Fe _{72.5} Si _{12.5} B ₁₅ Alloy Obtained by Gas Atomization Technique. IEEE Transactions on Magnetics, 2018, 54, 1-5.	1.2	13
116	Magnetic properties, martensitic and magnetostructural transformations of ferromagnetic Ni–Mn–Sn–Cu shape memory alloys. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	1.1	13
117	Engineering of domain wall propagation in magnetic microwires with graded magnetic anisotropy. Applied Materials Today, 2022, 26, 101263.	2.3	13
118	Optimization of Magnetic Properties and Giant Magnetoimpedance Effect in Nanocrystalline Microwires. Journal of Superconductivity and Novel Magnetism, 2015, 28, 813-822.	0.8	12
119	Surface defect detection of magnetic microwires by miniature rotatable robot inside SEM. AIP Advances, 2016, 6, 095309.	0.6	12
120	Preparation and Characterization of Fe-Pt and Fe-Pt-(B, Si) Microwires. IEEE Magnetics Letters, 2016, 7, 1-4.	0.6	12
121	Effect of annealing on magnetic properties and structure of Fe-Ni based magnetic microwires. Journal of Magnetism and Magnetic Materials, 2017, 433, 278-284.	1.0	12
122	Stress-induced magnetic anisotropy enabling engineering of magnetic softness of Fe-rich amorphous microwires. Journal of Magnetism and Magnetic Materials, 2020, 510, 166939.	1.0	12
123	Tailoring of Magnetic Softness and Magnetoimpedance of Coâ€Rich Microwires by Stress Annealing. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2100130.	0.8	12
124	Effect of Interaction on Giant Magnetoimpedance Effect in a System of Few Thin Wires. Sensor Letters, 2007, 5, 10-12.	0.4	12
125	Symmetry breaking effect of dc bias current on magnetoimpedance in microwire with helical anisotropy: Application to magnetic sensors. Journal of Applied Physics, 2011, 110, .	1.1	11
126	Magnetic properties and domain wall propagation in FeNiSiB glass-coated microwires. Journal of Applied Physics, 2014, 115, 17A309.	1.1	11

#	Article	IF	CITATIONS
127	Magnetic Properties of Heusler-Type NiMnGa Glass-Coated Microwires. IEEE Transactions on Magnetics, 2015, 51, 1-4.	1.2	11
128	Studies of High-Frequency Giant Magnetoimpedance Effect in Co-Rich Amorphous Microwires. IEEE Transactions on Magnetics, 2015, 51, 1-4.	1.2	11
129	Engineering of the GMR Effect in CuCo Microwires with Granular Structure. Journal of Electronic Materials, 2016, 45, 2401-2406.	1.0	11
130	Surface magnetic properties and giant magnetoimpedance effect in Co-based amorphous ribbons. Intermetallics, 2017, 86, 15-19.	1.8	11
131	Optimization of high frequency magnetoimpedance effect of Fe-rich microwires by stress-annealing. Intermetallics, 2018, 94, 92-98.	1.8	11
132	Magnetic hardening of Fe-Pt and Fe-Pt- M (M=B, Si) microwires. Journal of Alloys and Compounds, 2018, 735, 1071-1078.	2.8	11
133	Stress-Induced Magnetic Anisotropy Enabling Engineering of Magnetic Softness and GMI Effect of Amorphous Microwires. Applied Sciences (Switzerland), 2020, 10, 981.	1.3	11
134	Magnetic Properties and Domain Wall Propagation in Micrometric Amorphous Microwires. Sensor Letters, 2013, 11, 187-190.	0.4	11
135	Thermal activation over a complex energy barrier in bistable microwires. Physical Review B, 2006, 73, .	1.1	10
136	GMI effect in ultra-thin glass-coated Co-rich amorphous wires. Sensors and Actuators B: Chemical, 2007, 126, 232-234.	4.0	10
137	Role of Defects on Domain Wall Propagation in Magnetically Bistable Glass-Covered Microwires. Journal of Superconductivity and Novel Magnetism, 2011, 24, 851-854.	0.8	10
138	Magnetoelastic Effects and Distribution of Defects in Micrometric Amorphous Wires. IEEE Transactions on Magnetics, 2012, 48, 1324-1326.	1.2	10
139	Correlation between the magnetostriction constant and thermal properties of soft magnetic microwires. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 1083-1086.	0.8	10
140	Tuning of magnetic properties in Ni-Mn-Ga Heusler-type glass-coated microwires by annealing. Journal of Alloys and Compounds, 2020, 838, 155481.	2.8	10
141	Magnetoimpedance Response and Field Sensitivity in Stress-Annealed Co-Based Microwires for Sensor Applications. Sensors, 2020, 20, 3227.	2.1	10
142	Magnetoelastic Contribution in Domain-Wall Dynamics of Magnetically Bistable Microwires. IEEE Transactions on Magnetics, 2011, 47, 3783-3786.	1.2	9
143	Effect of applied stresses on domainâ€wall propagation in glassâ€coated amorphous microwires. Physica Status Solidi (A) Applications and Materials Science, 2011, 208, 545-548.	0.8	9
144	Microwave Metamaterials Containing Magnetically Soft Microwires. Materials Research Society Symposia Proceedings, 2011, 1312, 1.	0.1	9

#	Article	IF	CITATIONS
145	Spectral properties of electromotive force induced by periodic magnetization reversal of arrays of coupled magnetic glass-covered microwires. Journal of Applied Physics, 2012, 111, .	1.1	9
146	Magnetoresistance and Kondo-like behaviour in Co5Cu95 microwires. Journal of Alloys and Compounds, 2016, 674, 266-271.	2.8	9
147	Simultaneous Detection of Giant Magnetoimpedance and Fast Domain Wall Propagation in Co-Based Glass-Coated Microwires. IEEE Magnetics Letters, 2016, 7, 1-4.	0.6	9
148	Optimization of Magnetic Properties of Magnetic Microwires by Post-Processing. Processes, 2020, 8, 1006.	1.3	9
149	High-frequency GMI effect in glass-coated amorphous wires. Journal of Alloys and Compounds, 2009, 488, 9-12.	2.8	8
150	Kondo Effect and Magnetotransport Properties in Co-Cu Microwires. IEEE Transactions on Magnetics, 2012, 48, 3532-3535.	1.2	8
151	Giant magnetoimpedance in thin amorphous and nanocrystalline microwires. Applied Physics A: Materials Science and Processing, 2014, 115, 547-553.	1.1	8
152	Tuneable Metacomposites Based on Functional Fillers. Springer Series in Materials Science, 2016, , 311-357.	0.4	8
153	Optimization of GMI Effect and Magnetic Properties of Co-Rich Microwires by Joule Heating. IEEE Transactions on Magnetics, 2019, 55, 1-4.	1.2	8
154	Martensitic Transformation, Thermal Analysis and Magnetocaloric Properties of Ni-Mn-Sn-Pd Alloys. Processes, 2020, 8, 1582.	1.3	8
155	Engineering of magnetic properties and domain wall dynamics in Fe-Ni-based amorphous microwires by annealing. AIP Advances, 2020, 10, .	0.6	8
156	Magnetization processes in thin magnetic wires. Journal of Magnetism and Magnetic Materials, 2006, 300, e305-e310.	1.0	7
157	Magnetic behavior and microstructure of Finemet-type ribbons in both, surface and bulk. Journal of Non-Crystalline Solids, 2007, 353, 777-781.	1.5	7
158	Design of magnetic properties of arrays of magnetostatically coupled glassâ€covered magnetic microwires. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 1954-1959.	0.8	7
159	Induced Giant Magnetoimpedance Effect by Current Annealing in Ultra Thin Co-Based Amorphous Ribbons. IEEE Transactions on Magnetics, 2013, 49, 1009-1012.	1.2	7
160	Studies of the Defects Influence on Magnetic Properties of Glass-Coated Microwires. IEEE Transactions on Magnetics, 2014, 50, 1-4.	1.2	7
161	Engineering of Giant Magnetoimpedance Effect of Amorphous and Nanocrystalline Microwires. Journal of Superconductivity and Novel Magnetism, 2017, 30, 1359-1366.	0.8	7
162	Engineering of Magnetic Properties of Co- and Fe-Rich Microwires. IEEE Transactions on Magnetics, 2018, 54, 1-7.	1.2	7

#	Article	IF	CITATIONS
163	Giant magnetoimpedance effect at GHz frequencies in amorphous microwires. AIP Advances, 2019, 9, .	0.6	7
164	Effect of neodymium content and niobium addition on grain growth of Nd-Fe-B powders produced by gas atomization. Materials Characterization, 2021, 172, 110844.	1.9	7
165	Advanced functional magnetic microwires for magnetic sensors suitable for biomedical applications. , 2022, , 527-579.		7
166	Fabrication and Magneto-Structural Properties of Co2-Based Heusler Alloy Glass-Coated Microwires with High Curie Temperature. Chemosensors, 2022, 10, 225.	1.8	7
167	Domainâ€wall propagation in thin Feâ€rich glassâ€coated amorphous wires. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 679-682.	0.8	6
168	Microwave Metamaterials Containing Magnetically Soft Microwires. Advances in Science and Technology, 0, , .	0.2	6
169	Tuneable Composites Containing Magnetic Microwires. , 0, , .		6
170	Annealing effect on local nucleation fields in bistable microwires. Physica Status Solidi (A) Applications and Materials Science, 2011, 208, 549-552.	0.8	6
171	Giant magneto-impedance effect of thin magnetic wires at elevated frequencies. Journal of Applied Physics, 2012, 111, 07E512.	1.1	6
172	Magnetoimpedance Response in Co-Based Amorphous Ribbons Obtained Under the Action of a Magnetic Field. IEEE Transactions on Magnetics, 2012, 48, 4375-4377.	1.2	6
173	Fast Magnetization Switching in Amorphous Microwires. Acta Physica Polonica A, 2014, 126, 7-11.	0.2	6
174	Hopkinson effect in Coâ€rich glassâ€coated microwires. Physica Status Solidi C: Current Topics in Solid State Physics, 2014, 11, 1130-1132.	0.8	6
175	Effect of Nanocrystallization on Magnetic Properties and CMI Effect of Microwires. IEEE Transactions on Magnetics, 2014, 50, 1-5.	1.2	6
176	Processing magnetic microwires for magnetic bistability and magnetoimpedance. , 2015, , 225-274.		6
177	Estimation of the frequency and magnetic field dependence of the skin depth in Co-rich magnetic microwires from GMI experiments. Journal of Science: Advanced Materials and Devices, 2016, 1, 388-392.	1.5	6
178	Left-handed metacomposites containing carbon fibers and ferromagnetic microwires. AIP Advances, 2017, 7, 056110.	0.6	6
179	High frequency giant magnetoimpedance effect of a stress-annealed Fe-rich glass-coated microwire. Journal of Alloys and Compounds, 2019, 802, 112-117.	2.8	6
180	Impact of Stress Annealing on the Magnetization Process of Amorphous and Nanocrystalline Co-Based Microwires. Materials, 2019, 12, 2644.	1.3	6

#	Article	IF	CITATIONS
181	Development of Co-Rich Microwires with Graded Magnetic Anisotropy. Sensors, 2022, 22, 187.	2.1	6
182	Nanostructure and magnetic properties of Ni-substituted finemet ribbons. Journal of Magnetism and Magnetic Materials, 2007, 316, e74-e77.	1.0	5
183	Studies of thin microwires with enhanced magnetic softness and GMI effect. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 674-678.	0.8	5
184	High frequency magneto impedance in amorphous microwires. Journal of Physics: Conference Series, 2010, 200, 082009.	0.3	5
185	Giant magnetoâ€impedance effect in thin Finemet nanocrystalline microwires. Physica Status Solidi C: Current Topics in Solid State Physics, 2014, 11, 1120-1124.	0.8	5
186	Domain Wall Propagation in Co-Based Glass-Coated Microwires: Effect of Stress Annealing and Tensile Applied Stresses. IEEE Transactions on Magnetics, 2014, 50, 1-4.	1.2	5
187	GMR effect and Kondo-like behaviour in Co-Cu microwires. Journal of Alloys and Compounds, 2017, 695, 976-980.	2.8	5
188	Tailoring of magnetic softness and GMI effect in Fe-rich thin magnetic wires. AIP Advances, 2018, 8, 056102.	0.6	5
189	Ultrafast Magnetization Dynamics in Metallic Amorphous Ribbons with a Giant Magnetoimpedance Response. Physical Review Applied, 2020, 13, .	1.5	5
190	Development of iron-rich microwires with a unique combination of magnetic properties. Scripta Materialia, 2021, 195, 113726.	2.6	5
191	Effect of particle size on grain growth of Nd-Fe-B powders produced by gas atomization. Materials Characterization, 2022, 187, 111824.	1.9	5
192	Complex susceptibility measurements in amorphous glass-coated microwires. Journal of Non-Crystalline Solids, 2007, 353, 928-930.	1.5	4
193	Magnetic and transport properties of Fe-rich thin cold-drawn amorphous wires. Journal of Alloys and Compounds, 2009, 488, 5-8.	2.8	4
194	Magnetoelastic Contribution in Domain Wall Propagation of Micrometric Wires. Journal of Nanoscience and Nanotechnology, 2012, 12, 7582-7586.	0.9	4
195	Annealing Influence on the Exchange-Bias and Magnetostructural Properties in the Ni _{50.0} Mn _{36.5} Sn _{13.5} Ribbon-Shape Alloy. Solid State Phenomena, 2015, 233-234, 179-182.	0.3	4
196	Heusler Alloy Ribbons: Structure, Martensitic Transformation, Magnetic Transitions, and Exchange Bias Effect. Springer Series in Materials Science, 2016, , 83-114.	0.4	4
197	Tuning of Magnetic Properties of Ni–Mn–Ga Glass-Coated Microwires. IEEE Transactions on Magnetics, 2018, 54, 1-4.	1.2	4
198	Effect of annealing on magnetic properties of Ni–Mn–Ga glass-coated microwires. Journal of Materials Research, 2018, 33, 2148-2155.	1.2	4

#	Article	IF	CITATIONS
199	Engineering of Magnetic Properties of Fe-Rich Microwires by Stress Annealing. IEEE Transactions on Magnetics, 2019, 55, 1-4.	1.2	4
200	Ni-Mn-Sn-Cu Alloys after Thermal Cycling: Thermal and Magnetic Response. Materials, 2021, 14, 6851.	1.3	4
201	Tuning of Magnetoimpedance Effect and Magnetic Properties of Fe-Rich Glass-Coated Microwires by Joule Heating. Sensors, 2022, 22, 1053.	2.1	4
202	Studies of giant magnetoimpedance effect of Coâ€rich microwires in wide frequency range. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 671-673.	0.8	3
203	Development of magnetically soft microwires with GMI effect. Journal of Physics: Conference Series, 2011, 303, 012085.	0.3	3
204	Amorphous microwires with enhanced magnetic softness and GMI characteristics. EPJ Web of Conferences, 2012, 29, 00052.	0.1	3
205	GMR effect in Co-Cu microwires. Journal of the Korean Physical Society, 2013, 62, 1940-1944.	0.3	3
206	Manipulation of domain wall dynamics in microwires by transverse magnetic field. Journal of the Korean Physical Society, 2013, 62, 1363-1367.	0.3	3
207	Effect of Annealing on Off-Diagonal GMI Effect of Co-Rich Amorphous Microwires. IEEE Transactions on Magnetics, 2014, 50, 1-4.	1.2	3
208	Effect of Annealing on Magnetic Properties and Giant Magnetoimpedance Effect of Amorphous Microwires. IEEE Transactions on Magnetics, 2014, 50, 1-4.	1.2	3
209	Giant Magnetoimpedance Effect of Amorphous and Nanocrystalline Glass-Coated Microwires. Smart Sensors, Measurement and Instrumentation, 2016, , 103-130.	0.4	3
210	Kondo-like behavior and GMR effect in granular Cu90Co10 microwires. AIP Advances, 2017, 7, .	0.6	3
211	Amorphous and Nanocrystalline Glass-Coated Wires: Optimization of Soft Magnetic Properties. Springer Series in Materials Science, 2017, , 1-31.	0.4	3
212	Current induced domain wall propagation in Co-rich amorphous microwires. AIP Advances, 2017, 7, 056026.	0.6	3
213	Magnetic properties of "thick―glass-coated Fe-rich microwires. AIP Advances, 2019, 9, .	0.6	3
214	Reversible and Non-Reversible Transformation of Magnetic Structure in Amorphous Microwires. Nanomaterials, 2020, 10, 1450.	1.9	3
215	Stress-Induced Magnetic Anisotropy Enabling Engineering of Magnetic Softness GMI Effect and Domain Wall Dynamics of Amorphous Microwires. Physics of Metals and Metallography, 2020, 121, 316-321.	0.3	3
216	Development of Ultra-Thin Glass-Coated Amorphous Microwires for High Frequency Magnetic Sensors Applications. Open Materials Science Journal, 2007, 1, 1-12.	0.2	3

#	Article	IF	CITATIONS
217	GMI Effect of Ultra-Soft Magnetic Soft Amorphous Microwires. Open Materials Science Journal, 2012, 6, 39-43.	0.2	3
218	Effect of Joule heating on GMI and magnetic properties of Fe-rich glass-coated microwires. AIP Advances, 2022, 12, .	0.6	3
219	The influence of glass coating on the single domain wall potential in amorphous glass-coated Fe-based microwires. Journal of Magnetism and Magnetic Materials, 2006, 304, e519-e521.	1.0	2
220	1D and 2D position detection using magnetoimpedance sensor array. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 2626-2629.	0.8	2
221	The leftâ€hand behaviour of polymer composites with Feâ€based microwires. Physica Status Solidi C: Current Topics in Solid State Physics, 2014, 11, 1086-1088.	0.8	2
222	Manipulation of Magnetic Properties and Domain Wall Dynamics in Amorphous Ferromagnetic Microwires by Annealing under Applied Stress. Solid State Phenomena, 2014, 215, 432-436.	0.3	2
223	Manipulation of Magnetic Properties and Domain Wall Dynamics of Amorphous Ferromagnetic Co _{68.7} Fe ₄ Ni ₁ B ₁₃ Si ₁₁ Mo _{2.3} Microwire by Changing of Annealing Temperature. Solid State Phenomena, 2015, 233-234, 269-272.	0.3	2
224	Tuning of Magnetic Properties of Ni-Mn-In-Co Heusler-Type Glass-Coated Microwires. Jom, 2015, 67, 2117-2122.	0.9	2
225	Effect of Temperature and Time of Stress Annealing on Magnetic Properties of Amorphous Microwires. Acta Physica Polonica A, 2015, 127, 600-602.	0.2	2
226	GMR and Kondo Effects in Cu-Co Microwires. Journal of Superconductivity and Novel Magnetism, 2017, 30, 1109-1114.	0.8	2
227	Giant magnetoimpedance and magneto-optical Kerr effects in (Co63Ni37)75Si15B10 amorphous ribbon. Intermetallics, 2020, 125, 106925.	1.8	2
228	Coercivity and Magnetic Anisotropy of (Fe0.76Si0.09B0.10P0.05)97.5Nb2.0Cu0.5 Amorphous and Nanocrystalline Alloy Produced by Gas Atomization Process. Nanomaterials, 2020, 10, 884.	1.9	2
229	Magneto-Transport Properties of Co–Cu Thin Films Obtained by Co-Sputtering and Sputter Gas Aggregation. Nanomaterials, 2021, 11, 134.	1.9	2
230	Spectral Characteristics of the Arrays of Magnetically Coupled Glass-Covered Microwires. Sensor Letters, 2013, 11, 115-118.	0.4	2
231	Magnetic Characterization of Melt-Spun Co-Ni-Ga Ferromagnetic Superelastic Alloy. Acta Physica Polonica A, 2017, 131, 1075-1077.	0.2	2
232	High Frequency Giant Magnetoimpedance Effect of amorphous microwires for magnetic sensors applications. International Journal on Smart Sensing and Intelligent Systems, 2014, 7, 1-6.	0.4	2
233	Improvement of high frequency giant magnetoimpedance effect in CoFeSiB amorphous ribbon with vanishing magnetostriction by electrodeposited Co coating surface layer. Journal of Materials Research and Technology, 2021, 15, 6929-6939.	2.6	2
234	Magnetic Properties and High–Frequency GMI Effect in Thin Glass-Coated Amorphous Wires. AIP Conference Proceedings, 2008, , .	0.3	1

#	Article	IF	CITATIONS
235	Domain Wall Propagation in Thin Fe-Rich Glass-Coated Amorphous Wires. AIP Conference Proceedings, 2008, , .	0.3	1
236	Pinning Field Distribution and Microstructural Study of Thermal Annealed Fe-Nb-Cu-Si-B Wires. IEEE Transactions on Magnetics, 2010, 46, 387-389.	1.2	1
237	Domain wall dynamics of magnetically bistable microwires. EPJ Web of Conferences, 2012, 29, 00036.	0.1	1
238	Domain walls collision in Fe-rich and Co-rich glass covered microwires. EPJ Web of Conferences, 2013, 40, 17004.	0.1	1
239	Manipulation of magnetic and magneto-transport properties of amorphous glass-coated microwires through various annealing processes. Physica Status Solidi C: Current Topics in Solid State Physics, 2014, 11, 1125-1129.	0.8	1
240	Magnetostriction of Co-Fe-Based Amorphous Soft Magnetic Microwires. , 2015, , 265-271.		1
241	High frequency giant magnetoimpedance effect of soft magnetic amorphous microwires. , 2015, , .		1
242	Magnetic Properties of Nanocrystalline Microwires. Journal of Electronic Materials, 2016, 45, 212-218.	1.0	1
243	Optimization of Soft Magnetic Properties in Fe-Ni-Based Magnetic Microwires. IEEE Transactions on Magnetics, 2016, 52, 1-3.	1.2	1
244	Magnetic and Transport Properties of M-Cu (M = Co, Fe) Microwires. Smart Sensors, Measurement and Instrumentation, 2016, , 81-102.	0.4	1
245	Magnetic Properties and Defects of Fe-Ni-Based Magnetic Microwires. IEEE Transactions on Magnetics, 2017, 53, 1-4.	1.2	1
246	Tailoring of Soft Magnetic Properties and High Frequency Giant Magnetoimpedance in Amorphous Ribbons. Springer Series in Materials Science, 2017, , 33-52.	0.4	1
247	Surface magnetic properties and giant magnetoimpedance effect in Co-based amorphous ribbons. , 2017, , \cdot		1
248	Heusler-type glass-coated microwires: Fabrication, characterization, and properties. , 2020, , 255-294.		1
249	Studies of Magnetic Properties of Ni-Mn-In-Co Heusler-Type Glass-Coated Microwires. , 2015, , 149-155.		1
250	Tailoring of domain wall dynamics in amorphous microwires by annealing. , 0, .		1
251	Tailoring of Magnetic Properties and GMI Effect of Amorphous Microwires by Annealing. Smart Sensors, Measurement and Instrumentation, 2015, , 399-423.	0.4	1
252	Engineering of Magnetic Properties of Magnetic Microwires. Acta Physica Polonica A, 2018, 133, 321-328.	0.2	1

#	Article	IF	CITATIONS
253	Graded magnetic anisotropy in Co-rich microwires. AIP Advances, 2022, 12, .	0.6	1
254	Tunable Microwave Composites Containing Ferromagnetic Microwires. Materials Research Society Symposia Proceedings, 2009, 1223, 3041.	0.1	0
255	Effect of annealing on magnetic properties and Giant magnetoimpedance effect of amorphous microwires. , 2013, , .		0
256	GMI effect of amorphous microwires with enhanced magnetic softness. Journal of the Korean Physical Society, 2013, 62, 1382-1387.	0.3	0
257	Recent Research on the Magnetoimpedance Effect in Co-Based Amorphous Ribbons. Advanced Materials Research, 0, 646, 222-227.	0.3	0
258	Effect of nanocrystallization on Giant magnetoimpedance effect of microwires. , 2013, , .		0
259	Soft magnetic amorphous ribbons with high frequency Magnetoimpedance for sensors. , 2013, , .		0
260	Magnetic Properties and Giant Magnetoimpedance in Amorphous and Nanocrystalline Microwires. Acta Physica Polonica A, 2014, 126, 146-147.	0.2	0
261	GHz magnetic field influence on magnetization reversal in amorphous microwires. Physica Status Solidi C: Current Topics in Solid State Physics, 2014, 11, 986-988.	0.8	0
262	Influence of the Defects on Magnetic Properties of Glass-Coated Microwires. Solid State Phenomena, 0, 233-234, 285-289.	0.3	0
263	Magnetic Properties of Nanocrystalline Microwires. , 2015, , 283-289.		0
264	Magneto-impedance and ferro-magnetic resonance effects in thin amorphous wires and their application in functional composites materials at microwaves. , 2015, , .		0
265	Studies of Giant magnetoimpedance effect in soft magnetic microwires at GHz frequencies. , 2016, , .		0
266	Tunable metacomposites containing hybrid Co- and Fe-based ferromagnetic microwires. , 2016, , .		0
267	Features of Amorphous Microwires With Spontaneous and Induced Magnetic Bistability. IEEE Transactions on Magnetics, 2016, 52, 1-4.	1.2	0
268	Current controlled magnetic memory based on hysteretic switching of impedance in conductor with inclined anisotropy easy axis. , 2017, , .		0
269	Engineering of magnetic properties and GMI effect of Co- and Fe-rich microwires by annealing. , 2017, , .		0

270 Analysis of the off-diagonal component of giant magnetoimpedance effect in Co-based (as-cast and) Tj ETQq0 0 0 rgBT /Overlock 10 Tf

#	Article	IF	CITATIONS
271	Optimization of GMI Effect and Magnetic Properties of Co-Rich Microwires by Joule Heating. , 2018, , .		0
272	Engineering of Giant Magnetoimpedance Effect in Co-rich Microwires by Joule heating. , 2018, , .		0
273	Optimization of Giant Magnetoimpedance Effect in Fe-rich Microwires. , 2018, , .		Ο
274	Engineering of GMI Effect of Fe-Rich Microwires by Stress Annealing. , 2018, , .		0
275	Tailoring of Magnetic Properties and GMI Effect in Thin Amorphous Wires. , 2014, , 785-792.		0
276	Optimization of Soft Magnetic Properties in Nanocrystalline Glass-Coated Microwires. , 2015, , 157-164.		0
277	Tailoring of Magnetic Properties and Magnetoimpedance Effect in Thin Amorphous Wires. Acta Physica Polonica A, 2016, 129, 694-697.	0.2	Ο
278	Frequency and Magnetic Field Dependence of the Skin Depth in Co-rich Soft Magnetic Microwires. Advanced Electromagnetics, 2016, 5, 39.	0.7	0
279	Engineering of giant magnetoimpedance effect of amorphous and nanocrystalline microwires. Advanced Electromagnetics, 2016, 5, 63.	0.7	0
280	Magnetic and Transport properties of Co-Cu Microwires. International Journal on Smart Sensing and Intelligent Systems, 2014, 7, 1-6.	0.4	0
281	Advanced Magnetic Microwires for Sensing Applications. , 2022, , .		0
282	Domain wall propagation in Fe-rich magnetic microwires with graded magnetic anisotropy. AIP Advances, 2022, 12, 035228.	0.6	0