Doyoung Byun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8620909/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electrohydrodynamic Jet-Printed MAPbBr3 Perovskite/Polyacrylonitrile Nanostructures for Water-Stable, Flexible, and Transparent Displays. ACS Applied Nano Materials, 2022, 5, 6726-6735.	2.4	6
2	A hydrogel-assisted GDC chemical diffusion barrier for durable solid oxide fuel cells. Journal of Materials Chemistry A, 2021, 9, 11683-11690.	5.2	13
3	Experimental, Theoretical, and Numerical Investigation of the Electric Field and Surface Wettability Effects on the Penetration Length in Capillary Flow. ACS Omega, 2021, 6, 32773-32782.	1.6	3
4	Direct Patterning and Spontaneous Self-Assembly of Graphene Oxide via Electrohydrodynamic Jet Printing for Energy Storage and Sensing. Micromachines, 2020, 11, 13.	1.4	14
5	36â€1: Invited Paper: Highâ€Resolution Inducedâ€Electrohydrodynamic (iEHD) Jet Printing for Display. Digest of Technical Papers SID International Symposium, 2020, 51, 505-507.	0.1	2
6	Silver Nanowire Micro-Ring Formation Using Immiscible Emulsion Droplets for Surface-Enhanced Raman Spectroscopy. Applied Sciences (Switzerland), 2020, 10, 8018.	1.3	1
7	Direct Fabrication of Metallic Microgear via Electrohydrodynamic Inkjet 3D Printing. Advanced Engineering Materials, 2020, 22, 1901362.	1.6	9
8	Redox-Active Tyrosine-Mediated Peptide Template for Large-Scale Single-Crystalline Two-Dimensional Silver Nanosheets. ACS Nano, 2020, 14, 1738-1744.	7.3	16
9	Electrohydrodynamic Jet Printed 3D Metallic Grid: Toward Highâ€Performance Transparent Electrodes. Advanced Engineering Materials, 2020, 22, 1901275.	1.6	29
10	Rational Design of a Metallic Functional Layer for High-Performance Solid Oxide Fuel Cells. ACS Applied Energy Materials, 2019, 2, 4059-4068.	2.5	16
11	Hydrogel Film Assembly Process at Droplet Interface with Evaporation Temperature. Advanced Materials Interfaces, 2019, 6, 1801885.	1.9	5
12	1D Fibers and 2D Patterns Made of Quantum Dotâ€Embedded DNA via Electrospinning and Electrohydrodynamic Jet Printing. Advanced Materials Technologies, 2019, 4, 1800280.	3.0	15
13	Ultrafast Growth of Large 2D Silver Nanosheets by Highly Ordered Biological Template at Air/Gel Interface. Advanced Materials Interfaces, 2018, 5, 1701491.	1.9	15
14	Biomimetic, Flexible, and Self-Healable Printed Silver Electrode by Spontaneous Self-Layering Phenomenon of a Gelatin Scaffold. ACS Applied Materials & Interfaces, 2018, 10, 25666-25672.	4.0	14
15	Self-Assembly of Silver Nanowire Ring Structures Driven by the Compressive Force of a Liquid Droplet. Langmuir, 2017, 33, 3367-3372.	1.6	6
16	One-Step Sub-micrometer-Scale Electrohydrodynamic Inkjet Three-Dimensional Printing Technique with Spontaneous Nanoscale Joule Heating. ACS Applied Materials & Interfaces, 2017, 9, 29965-29972.	4.0	28
17	RF plasma based selective modification of hydrophilic regions on super hydrophobic surface. Applied Surface Science, 2017, 394, 543-553.	3.1	18
18	Electrostatic-Force-Assisted Dispensing Printing to Construct High-Aspect-Ratio of 0.79 Electrodes on a Textured Surface with Improved Adhesion and Contact Resistivity. Scientific Reports, 2015, 5, 16704.	1.6	33

DOYOUNG BYUN

#	Article	IF	CITATIONS
19	Spontaneous self-welding of silver nanowire networks. Physical Chemistry Chemical Physics, 2015, 17, 7629-7633.	1.3	27
20	Directly Drawn Poly(3-hexylthiophene) Field-Effect Transistors by Electrohydrodynamic Jet Printing: Improving Performance with Surface Modification. ACS Applied Materials & Interfaces, 2014, 6, 10736-10743.	4.0	48
21	Fabrication of terahertz metamaterial with high refractive index using high-resolution electrohydrodynamic jet printing. Applied Physics Letters, 2013, 103, .	1.5	51
22	Non-contact printing of high aspect ratio Ag electrodes for polycrystalline silicone solar cell with electrohydrodynamic jet printing. Applied Physics Letters, 2013, 102, .	1.5	69
23	Ag dot morphologies printed using electrohydrodynamic (EHD) jet printing based on a drop-on-demand (DOD) operation. Journal of Micromechanics and Microengineering, 2013, 23, 095028.	1.5	45
24	Characterization of deciliation-regeneration process of Tetrahymena Pyriformis for cellular robot fabrication. Journal of Bionic Engineering, 2011, 8, 273-279.	2.7	5
25	Quantitative measurement of dynamic flow induced by Tetrahymena pyriformis (T. pyriformis) using micro-particle image velocimetry. Journal of Visualization, 2011, 14, 361-370.	1.1	5
26	Use of an AC electric field in galvanotactic on/off switching of the motion of a microstructure blotted by <i>Serratia marcescens</i> . Applied Physics Letters, 2011, 99, .	1.5	18
27	Retreat behavior of a charged droplet for electrohydrodynamic inkjet printing. Applied Physics Letters, 2011, 98, 083501.	1.5	19
28	Semianalytical study of hemispherical meniscus oscillation with an anchored edge on a conductive flat plate under an ac electric field. Physics of Fluids, 2011, 23, .	1.6	9
29	Flight behavior of charged droplets in electrohydrodynamic inkjet printing. Applied Physics Letters, 2010, 96, .	1.5	66
30	Properties of nano-sized glass powders prepared by flame spray pyrolysis as an inorganic binder in ink-jet printing. Journal of the Ceramic Society of Japan, 2010, 118, 613-616.	0.5	2
31	Finite macroâ€elementâ€based volume grid deformation for large moving boundary problems. International Journal for Numerical Methods in Biomedical Engineering, 2010, 26, 1656-1673.	1.0	8
32	Effect of chord flexure on aerodynamic performance of a flapping wing. Journal of Bionic Engineering, 2010, 7, 87-94.	2.7	24
33	Artificial Cambered-Wing for a Beetle-Mimicking Flapper. Journal of Bionic Engineering, 2010, 7, S130-S136.	2.7	15
34	Artificial magnetotactic motion control of <i>Tetrahymena pyriformis</i> using ferromagnetic nanoparticles: A tool for fabrication of microbiorobots. Applied Physics Letters, 2010, 97, .	1.5	64
35	10.1063/1.3497275.1., 2010, , .		1
36	Fabrication of Nanoscale Nozzle for Electrohydrodynamic (EHD) Inkjet Head and High Precision Patterning by Drop-on-Demand Operation. Journal of Nanoscience and Nanotechnology, 2009, 9, 7298-302.	0.9	13

DOYOUNG BYUN

#	Article	IF	CITATIONS
37	Aerodynamic analysis of flapping foils using volume grid deformation code. Journal of Mechanical Science and Technology, 2009, 23, 1727-1735.	0.7	3
38	Mimicking a Superhydrophobic Insect Wing by Argon and Oxygen Ion Beam Treatment on Polytetrafluoroethylene Film. Journal of Bionic Engineering, 2009, 6, 365-370.	2.7	28
39	Wetting Characteristics of Insect Wing Surfaces. Journal of Bionic Engineering, 2009, 6, 63-70.	2.7	196
40	Experimental and numerical investigation of beetle flight. , 2009, , .		0
41	Droplets Generation Method for Water-in-Oil State in the Polydimethylsiloxane Microchannel with Grooves. , 2009, , .		1
42	An algebraic substructuring using multiple shifts for eigenvalue computations. Journal of Mechanical Science and Technology, 2008, 22, 440-449.	0.7	5
43	Free surface transition and momentum augmentation of liquid flow in Micro/Nano-scale channels with hydrophobic and hydrophilic surfaces. Journal of Mechanical Science and Technology, 2008, 22, 2554-2562.	0.7	3
44	Drop-on-demand printing of conductive ink by electrostatic field induced inkjet head. Applied Physics Letters, 2008, 93, .	1.5	134
45	Direct measurement of slip flows in superhydrophobic microchannels with transverse grooves. Physics of Fluids, 2008, 20, 113601.	1.6	110
46	Electrospray on superhydrophobic nozzles treated with argon and oxygen plasma. Applied Physics Letters, 2008, 92, .	1.5	42