
Andrea Tridello

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8620756/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Very-high-cycle fatigue behavior of Ti-6Al-4V manufactured by selective laser melting: Effect of build orientation. International Journal of Fatigue, 2020, 136, 105628.	5.7	82
2	Effect of microstructure, residual stresses and building orientation on the fatigue response up to 109 cycles of an SLM AlSi10Mg alloy. International Journal of Fatigue, 2020, 137, 105659.	5.7	62
3	On specimen design for size effect evaluation in ultrasonic gigacycle fatigue testing. Fatigue and Fracture of Engineering Materials and Structures, 2014, 37, 570-579.	3.4	52
4	Sâ€N curves in the veryâ€highâ€cycle fatigue regime: statistical modeling based on the hydrogen embrittlement consideration. Fatigue and Fracture of Engineering Materials and Structures, 2016, 39, 1319-1336.	3.4	43
5	VHCF response of Gaussian SLM AlSi10Mg specimens: Effect of a stress relief heat treatment. International Journal of Fatigue, 2019, 124, 435-443.	5.7	42
6	VHCF response of asâ€built SLM AlSi10Mg specimens with large loaded volume. Fatigue and Fracture of Engineering Materials and Structures, 2018, 41, 1918-1928.	3.4	40
7	Crack initiation behavior and fatigue performance up to very-high-cycle regime of AlSi10Mg fabricated by selective laser melting with two powder sizes. International Journal of Fatigue, 2021, 143, 106013.	5.7	36
8	Influence of the annealing and defects on the VHCF behavior of an SLM AlSi10Mg alloy. Fatigue and Fracture of Engineering Materials and Structures, 2019, 42, 2794-2807.	3.4	34
9	Statistical models for estimating the fatigue life, the stress–life relation, and the Pâ€S–N curves of metallic materials in Very High Cycle Fatigue: A review. Fatigue and Fracture of Engineering Materials and Structures, 2022, 45, 332-370.	3.4	27
10	Experimental and Numerical Investigation of a Lattice Structure for Energy Absorption: Application to the Design of an Automotive Crash Absorber. Polymers, 2022, 14, 1116.	4.5	27
11	Microstructure and preliminary fatigue analysis on AlSi10Mg samples manufactured by SLM. Procedia Structural Integrity, 2017, 7, 50-57.	0.8	25
12	VHCF response of heat-treated SLM Ti6Al4V Gaussian specimens with large loaded volume. Procedia Structural Integrity, 2019, 18, 314-321.	0.8	25
13	Size-effect in Very High Cycle Fatigue: A review. International Journal of Fatigue, 2021, 153, 106462.	5.7	25
14	Effect of electroslag remelting on the VHCF response of an AISI H13 steel. Fatigue and Fracture of Engineering Materials and Structures, 2017, 40, 1783-1794.	3.4	23
15	VHCF strength decrement in large H13 steel specimens subjected to ESR process. Procedia Structural Integrity, 2016, 2, 1117-1124.	0.8	22
16	Size-effects affecting the fatigue response up to 109 cycles (VHCF) of SLM AlSi10Mg specimens produced in horizontal and vertical directions. International Journal of Fatigue, 2022, 160, 106825.	5.7	22
17	VHCF Response of AISI H13 Steel: assessment of Size Effects through Gaussian Specimens. Procedia Engineering, 2015, 109, 121-127.	1.2	21
18	Estimation of <scp>Pâ€Sâ€N</scp> curves in veryâ€highâ€cycle fatigue: Statistical procedure based on a general crack growth rate model. Fatigue and Fracture of Engineering Materials and Structures, 2018, 41, 718-726	3.4	20

ANDREA TRIDELLO

#	Article	IF	CITATIONS
19	Very high cycle fatigue (VHCF) response of additively manufactured materials: A review. Fatigue and Fracture of Engineering Materials and Structures, 2021, 44, 2919-2943.	3.4	20
20	Damaged composite laminates: Assessment of residual Young's modulus through the Impulse Excitation Technique. Composites Part B: Engineering, 2017, 128, 76-82.	12.0	19
21	Comparison between dog-bone and Gaussian specimens for size effect evaluation in gigacycle fatigue. Frattura Ed Integrita Strutturale, 2013, 7, 49-56.	0.9	18
22	Impact response of adhesive reversible joints made of thermoplastic nanomodified adhesive. Journal of Adhesion, 2018, 94, 1051-1066.	3.0	17
23	Ultrasonic VHCF Tests on Very Large Specimens with Risk-Volume Up to 5000 mm3. Applied Sciences (Switzerland), 2020, 10, 2210.	2.5	17
24	VHCF Response up to 109 Cycles of SLM AlSi10Mg Specimens Built in a Vertical Direction. Applied Sciences (Switzerland), 2019, 9, 2954.	2.5	16
25	VHCF Response of Two AISI H13 Steels: Effect of Manufacturing Process and Size-Effect. Metals, 2019, 9, 133.	2.3	15
26	Fatigue failures from defects in additive manufactured components: A statistical methodology for the analysis of the experimental results. Fatigue and Fracture of Engineering Materials and Structures, 2021, 44, 1944-1960.	3.4	15
27	VHCF response of Gaussian specimens made of highâ€strength steels: comparison between unrefined and refined AISI H13. Fatigue and Fracture of Engineering Materials and Structures, 2017, 40, 1676-1689.	3.4	14
28	Design against fatigue failures: Lower bound P-S-N curves estimation and influence of runout data. International Journal of Fatigue, 2022, 162, 106934.	5.7	13
29	Statistical distributions of Transition Fatigue Strength and Transition Fatigue Life in duplex S–N fatigue curves. Theoretical and Applied Fracture Mechanics, 2015, 80, 31-39.	4.7	12
30	Gaussian specimens for VHCF tests: Analytical prediction of damping effects. International Journal of Fatigue, 2016, 83, 36-41.	5.7	12
31	Effect of graphene nanoplatelets on the impact response of a carbon fibre reinforced composite. Materials Today Communications, 2020, 25, 101530.	1.9	12
32	Innovative formulation for topological fatigue optimisation based on material defects distribution and TopFat algorithm. International Journal of Fatigue, 2021, 147, 106176.	5.7	12
33	Modelling size effects for static strength of brittle materials. Materials and Design, 2020, 195, 109052.	7.0	11
34	Duplex S-N fatigue curves: statistical distribution of the transition fatigue life. Frattura Ed Integrita Strutturale, 2014, 8, 417-423.	0.9	10
35	Nondestructive determination of local material properties of laminated composites with the impulse excitation technique. Composite Structures, 2021, 262, 113607.	5.8	10
36	Residual Properties in Damaged Laminated Composites through Nondestructive Testing: A Review. Materials, 2021, 14, 4513.	2.9	10

ANDREA TRIDELLO

#	Article	IF	CITATIONS
37	Different Inclusion Contents in H13 Steel: Effects on VHCF Response of Gaussian Specimens. Key Engineering Materials, 0, 665, 49-52.	0.4	9
38	Statistical Estimation of Duplex S-N Curves. Key Engineering Materials, 0, 664, 285-294.	0.4	9
39	Assessment of Residual Elastic Properties of a Damaged Composite Plate with Combined Damage Index and Finite Element Methods. Applied Sciences (Switzerland), 2019, 9, 2579.	2.5	9
40	An innovative testing technique for assessing the VHCF response of adhesively bonded joints. Fatigue and Fracture of Engineering Materials and Structures, 2019, 42, 84-96.	3.4	8
41	A novel methodology for the assessment of the residual elastic properties in damaged composite components. Composite Structures, 2017, 161, 435-440.	5.8	7
42	Effect of defect size on P-S-N curves in Very-High-Cycle Fatigue. Procedia Structural Integrity, 2017, 7, 335-342.	0.8	7
43	VHCF Response of H13 Steels Produced with Different Manufacturing Processes. Procedia Engineering, 2016, 160, 93-100.	1.2	6
44	Fatigue response up to 10 ⁹ cycles of a structural epoxy adhesive. Fatigue and Fracture of Engineering Materials and Structures, 2020, 43, 1555-1566.	3.4	6
45	A new methodology for thermostructural topology optimization: Analytical definition and validation. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2021, 235, 481-500.	1.1	6
46	Influence of Low-pH Beverages on the Two-Body Wear of CAD/CAM Monolithic Materials. Polymers, 2021, 13, 2915.	4.5	6
47	Numerical modelling of the mechanical response of lattice structures produced through AM. Procedia Structural Integrity, 2021, 33, 714-723.	0.8	6
48	Crack growth from internal defects and related size-effect in VHCF. Procedia Structural Integrity, 2017, 5, 247-254.	0.8	5
49	A general model for crack growth from initial defect in Very-High-Cycle Fatigue. Procedia Structural Integrity, 2017, 3, 411-423.	0.8	5
50	Gaussian Specimens for Gigacycle Fatigue Tests: Evaluation of Temperature Increment. Key Engineering Materials, 0, 627, 85-88.	0.4	4
51	Gaussian Specimens for Gigacycle Fatigue Tests: Damping Effects. Procedia Engineering, 2014, 74, 113-118.	1.2	4
52	Experimental Assessment of the Dynamic Behavior of Polyolefin Thermoplastic Hot Melt Adhesive. , 2018, , .		4
53	Analytical Design of Gigacycle Fatigue Specimens for Size Effect Evaluation. Key Engineering Materials, 0, 577-578, 369-372.	0.4	3
54	Static strength of brittle materials under multiaxial nonuniform stress states: A novel statistical model for assessing size effects. Fatigue and Fracture of Engineering Materials and Structures, 2021, 44, 997-1013.	3.4	3

ANDREA TRIDELLO

#	Article	IF	CITATIONS
55	Defect-Driven Topology Optimisation: TopFat algorithm validation via 3D components re-design for real industrial applications. Procedia Structural Integrity, 2022, 39, 81-88.	0.8	3
56	Experimental-Numerical Assessment of Critical SIF from VHCF Tests. Key Engineering Materials, 2016, 713, 62-65.	0.4	1
57	VHCF response of AM materials: A literature review. Material Design and Processing Communications, 2020, 2, e121.	0.9	1
58	A new statistical software for the estimation of P-S-N curves in presence of defects: statistical models and experimental validation. IOP Conference Series: Materials Science and Engineering, 2021, 1038, 012029.	0.6	1
59	An innovative nondestructive technique for the local assessment of residual elastic properties in laminated composites. Procedia Structural Integrity, 2021, 33, 347-356.	0.8	1
60	An experimental-numerical methodology for the nondestructive assessment of the dynamic elastic properties of adhesives. IOP Conference Series: Materials Science and Engineering, 2021, 1038, 012028.	0.6	0
61	TopFat methodology implemented in a commercial software: benchmarking validation. Procedia Structural Integrity, 2021, 34, 221-228.	0.8	0
62	Defect-Driven Topology Optimisation: TopFat algorithm extended to commercial software for wide-ranging applications. Procedia Structural Integrity, 2021, 33, 1095-1102.	0.8	0