Mauricio Rodriguez-Lanetty

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8620730/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cell biology in model systems as the key to understanding corals. Trends in Ecology and Evolution, 2008, 23, 369-376.	8.7	293
2	Major Cellular and Physiological Impacts of Ocean Acidification on a Reef Building Coral. PLoS ONE, 2012, 7, e34659.	2.5	262
3	Early molecular responses of coral larvae to hyperthermal stress. Molecular Ecology, 2009, 18, 5101-5114.	3.9	183
4	Coral Thermal Tolerance: Tuning Gene Expression to Resist Thermal Stress. PLoS ONE, 2012, 7, e50685.	2.5	140
5	Transcriptome analysis of a cnidarian – dinoflagellate mutualism reveals complex modulation of host gene expression. BMC Genomics, 2006, 7, 23.	2.8	138
6	Resistance to thermal stress in corals without changes in symbiont composition. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 1100-1107.	2.6	132
7	Temporal and spatial infection dynamics indicate recognition events in the early hours of a dinoflagellate/coral symbiosis. Marine Biology, 2006, 149, 713-719.	1.5	82
8	Validation of Housekeeping Genes for Gene Expression Studies in Symbiodinium Exposed to Thermal and Light Stress. Marine Biotechnology, 2011, 13, 355-365.	2.4	75
9	Onset of symbiosis and distribution patterns of symbiotic dinoflagellates in the larvae of scleractinian corals. Marine Biology, 2009, 156, 1203-1212.	1.5	66
10	Ecological Inferences from a deep screening of the <scp>C</scp> omplex <scp>B</scp> acterial <scp>C</scp> onsortia associated with the coral, <i><scp>P</scp>orites astreoides</i> . Molecular Ecology, 2013, 22, 4349-4362.	3.9	59
11	Transcriptional Activation of c3 and hsp70 as Part of the Immune Response of Acropora millepora to Bacterial Challenges. PLoS ONE, 2013, 8, e67246.	2.5	53
12	Evolving lineages of Symbiodinium-like dinoflagellates based on ITS1 rDNA. Molecular Phylogenetics and Evolution, 2003, 28, 152-168.	2.7	49
13	Genomic signatures in the coral holobiont reveal host adaptations driven by Holocene climate change and reef specific symbionts. Science Advances, 2020, 6, .	10.3	44
14	Coralâ€bleaching responses to climate change across biological scales. Global Change Biology, 2022, 28, 4229-4250.	9.5	44
15	Freeâ€living and symbiotic lifestyles of a thermotolerant coral endosymbiont display profoundly distinct transcriptomes under both stable and heat stress conditions. Molecular Ecology, 2019, 28, 5265-5281.	3.9	40
16	Emergent effects of heavy metal pollution at a population level: Littorina brevicula a study case. Marine Pollution Bulletin, 2003, 46, 74-80.	5.0	38
17	Recurring Episodes of Thermal Stress Shift the Balance From a Dominant Host-Specialist to a Background Host-Generalist Zooxanthella in the Threatened Pillar Coral, Dendrogyra cylindrus. Frontiers in Marine Science, 2019, 6, .	2.5	33
18	Analytical approach for selecting normalizing genes from a cDNA microarray platform to be used in q-RT-PCR assays: A cnidarian case study. Journal of Proteomics, 2008, 70, 985-991.	2.4	31

#	Article	IF	CITATIONS
19	Worldwide exploration of the microbiome harbored by the cnidarian model, <i>Exaiptasia pallida</i> (Agassiz in Verrill, 1864) indicates a lack of bacterial association specificity at a lower taxonomic rank. PeerJ, 2017, 5, e3235.	2.0	31
20	Inter-domain microbial diversity within the coral holobiont <i>Siderastrea siderea</i> from two depth habitats. PeerJ, 2018, 6, e4323.	2.0	28
21	Defending against pathogens – immunological priming and its molecular basis in a sea anemone, cnidarian. Scientific Reports, 2015, 5, 17425.	3.3	27
22	Temporal dynamics of black band disease affecting pillar coral (Dendrogyra cylindrus) following two consecutive hyperthermal events on the Florida Reef Tract. Coral Reefs, 2017, 36, 427-431.	2.2	26
23	Isolation of Symbiosomes and The Symbiosome Membrane Complex from The Zoanthid Zoanthus Robustus. Phycologia, 2008, 47, 294-306.	1.4	24
24	Genetic diversity of free-living Symbiodinium in the Caribbean: the importance of habitats and seasons. Coral Reefs, 2015, 34, 927-939.	2.2	24
25	Proteomic Basis of Symbiosis: A Heterologous Partner Fails to Duplicate Homologous Colonization in a Novel Cnidarian– Symbiodiniaceae Mutualism. Frontiers in Microbiology, 2019, 10, 1153.	3.5	22
26	Symbiotic immuno-suppression: is disease susceptibility the price of bleaching resistance?. PeerJ, 2018, 6, e4494.	2.0	22
27	The use of highâ€resolution melting analysis for genotyping <i>Symbiodinium</i> strains: a sensitive and fast approach. Molecular Ecology Resources, 2011, 11, 394-399.	4.8	16
28	Photophysiological Tolerance and Thermal Plasticity of Genetically Different Symbiodiniaceae Endosymbiont Species of Cnidaria. Frontiers in Marine Science, 2021, 8, .	2.5	11
29	Genetic population structure of Littorina brevicula around Korean waters. Hydrobiologia, 2003, 505, 41-48.	2.0	9
30	Two anthozoans,Entacmaea quadricolor(order Actiniaria) andAlveopora japonica(order Scleractinia), host consistent genotypes ofSymbiodiniumspp. across geographic ranges in the northwestern Pacific Ocean. Animal Cells and Systems, 2011, 15, 315-324.	2.2	6
31	Transport of symbiotic zooxanthellae in mesogleal canals of Zoanthus robustus?. Coral Reefs, 2005, 24, 195-196.	2.2	5
32	Higher population genetic diversity within the algal symbiont <i>Durusdinium</i> in <i>Pocillopora verrucosa</i> from Mexican Pacific reefs correlates with higher resistance to bleaching after the El Niño 2015–16 event. Marine Ecology, 2021, 42, e12667.	1.1	2