Matteo Negroni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8620058/publications.pdf

Version: 2024-02-01

40 papers 1,386 citations

23 h-index 35 g-index

42 all docs 42 docs citations

42 times ranked 1448 citing authors

#	Article	IF	CITATIONS
1	CDX2 regulates ACE expression in blood development and leukemia cells. Blood Advances, 2021, 5, 2012-2016.	2.5	1
2	HIV-1 Capsid Core: A Bullet to the Heart of the Target Cell. Frontiers in Microbiology, 2021, 12, 652486.	1.5	22
3	Pseudotyping Lentiviral Vectors: When the Clothes Make the Virus. Viruses, 2020, 12, 1311.	1.5	23
4	NKNK: a New Essential Motif in the C-Terminal Domain of HIV-1 Group M Integrases. Journal of Virology, 2020, 94, .	1.5	7
5	RNA Structure—A Neglected Puppet Master for the Evolution of Virus and Host Immunity. Frontiers in Immunology, 2018, 9, 2097.	2.2	41
6	HIV-1 sequences in the epidemic suggest an alternative pathway for the generation of the Long Terminal Repeats. Scientific Reports, 2017, 7, 13715.	1.6	0
7	A step forward understanding HIV-1 diversity. Retrovirology, 2016, 13, 27.	0.9	8
8	Buffering deleterious polymorphisms in highly constrained parts of HIV-1 envelope by flexible regions. Retrovirology, 2016, 13, 50.	0.9	13
9	Potent Sensitisation of Cancer Cells to Anticancer Drugs by a Quadruple Mutant of the Human Deoxycytidine Kinase. PLoS ONE, 2015, 10, e0140741.	1.1	2
10	The external domains of the HIV-1 envelope are a mutational cold spot. Nature Communications, 2015, 6, 8571.	5.8	39
11	Genetic diversity of the highly variable V1 region interferes with Human Immunodeficiency Virus type 1 envelope functionality. Retrovirology, 2013, 10 , 114 .	0.9	15
12	Retrovolution: HIV–Driven Evolution of Cellular Genes and Improvement of Anticancer Drug Activation. PLoS Genetics, 2012, 8, e1002904.	1.5	7
13	Nonrandom Distribution of Cryptic Repeating Triplets of Purines and Pyrimidines (RNY) _{<i>n</i>} in gp120 of HIV Type1. AIDS Research and Human Retroviruses, 2012, 28, 493-504.	0.5	0
14	RNA structures, genomic organization and selection of recombinant HIV. RNA Biology, 2011, 8, 280-286.	1.5	27
15	RNA Structures Facilitate Recombination-Mediated Gene Swapping in HIV-1. Journal of Virology, 2010, 84, 12675-12682.	1.5	51
16	Molecular Mechanisms of Recombination Restriction in the Envelope Gene of the Human Immunodeficiency Virus. PLoS Pathogens, 2009, 5, e1000418.	2.1	70
17	Retroviruses., 2009,, 109-128.		1
18	Implications of recombination for HIV diversity. Virus Research, 2008, 134, 64-73.	1.1	69

#	Article	IF	CITATIONS
19	Identifying the Important HIV-1 Recombination Breakpoints. PLoS Computational Biology, 2008, 4, e1000178.	1.5	58
20	The distribution of HIV-1 recombination breakpoints. Infection, Genetics and Evolution, 2007, 7, 717-723.	1.0	38
21	Using RT-prone recombination to promote re-building of complete retroviral vectors from two defective precursors: Low efficiency and sequence specificities. Journal of Virological Methods, 2007, 142, 118-126.	1.0	2
22	Influence of sequence identity and unique breakpoints on the frequency of intersubtype HIV-1 recombination. Retrovirology, 2006, 3, 91.	0.9	30
23	Sequence determinants of breakpoint location during HIV-1 intersubtype recombination. Nucleic Acids Research, 2006, 34, 5203-5216.	6.5	53
24	Dissection of a Circumscribed Recombination Hot Spot in HIV-1 after a Single Infectious Cycle. Journal of Biological Chemistry, 2006, 281, 2711-2720.	1.6	39
25	Specific Interactions Between HIV-1 Nucleocapsid Protein and the TAR Element. Journal of Molecular Biology, 2005, 348, 1059-1077.	2.0	39
26	Mechanistic features of recombination in HIV. AIDS Reviews, 2005, 7, 92-102.	0.5	36
27	The Structure of HIV-1 Genomic RNA in the gp120 Gene Determines a Recombination Hot Spot in Vivo. Journal of Biological Chemistry, 2004, 279, 36625-36632.	1.6	64
28	Evidence for a Mechanism of Recombination during Reverse Transcription Dependent on the Structure of the Acceptor RNA. Journal of Biological Chemistry, 2003, 278, 15973-15982.	1.6	60
29	Mechanisms of Retroviral Recombination. Annual Review of Genetics, 2001, 35, 275-302.	3.2	131
30	Retroviral recombination: what drives the switch?. Nature Reviews Molecular Cell Biology, 2001, 2, 151-155.	16.1	45
31	The HIV-1 repeated sequence R as a robust hot-spot for copy-choice recombination. Nucleic Acids Research, 2001, 29, 3814-3821.	6.5	55
32	Copy-choice recombination by reverse transcriptases: Reshuffling of genetic markers mediated by RNA chaperones. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 6385-6390.	3.3	81
33	Recombination during reverse transcription: an evaluation of the role of the nucleocapsid protein. Journal of Molecular Biology, 1999, 286, 15-31.	2.0	52
34	Real time measurements of elongation by a reverse transcriptase using surface plasmon resonance Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 889-894.	3.3	86
35	Homologous recombination promoted by reverse transcriptase during copying of two distinct RNA templates Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 6971-6975.	3.3	37
36	Differential expression and stability of poly(ADP-ribose)polymerase mRNA in human cells. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1993, 1173, 133-140.	2.4	9

3

#	Article	IF	CITATIONS
37	ADP-Ribosylation of Nonhistone Proteins in HeLa Cells: Modification of DNA Topoisomerase II. Experimental Cell Research, 1993, 206, 177-181.	1.2	45
38	Detection of Circulating Autoantibodies to Poly(ADP-Ribose)Polymerase in Autoimmune Diseases. Annals of the New York Academy of Sciences, 1992, 663, 508-509.	1.8	0
39	Autoantibodies to Poly(ADP-Ribose)Polymerase in Autoimmune Diseases. Autoimmunity, 1990, 6, 203-209.	1.2	26
40	Genetic Flexibility of the NKNK Motif in HIV-1 Integrases Allows Its Involvement in Multiple Functions During Infection. SSRN Electronic Journal, 0, , .	0.4	0