
Leonardo Fanton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/862002/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Melting behavior and globular microstructure formation in semi-solid CoCrCu FeNi high-entropy alloys. Journal of Materials Science and Technology, 2020, 52, 207-217.	10.7	26
2	Comparison of Mechanical and Microstructural Characteristics in Maraging 300 Steel Welded by three Different Processes: LASER, PLASMA and TIG. Procedia Engineering, 2015, 114, 291-297.	1.2	22
3	Anodization growth of TiO2 nanotubes on Ti–35Nb–7Zr–5Ta alloy: effects of anodization time, strain hardening, and crystallographic texture. Journal of Materials Science, 2019, 54, 13724-13739.	3.7	12
4	Erosion–Corrosion Resistance of Laser Surface Alloying of NbC Thermal Spray Coatings on AISI 304L Steel. Journal of Thermal Spray Technology, 2020, 29, 319-329.	3.1	12
5	Effects of laser surface melting on crystallographic texture, microstructure, elastic modulus and hardness of Tiâ^'30Nbâ^'4Sn alloy. Transactions of Nonferrous Metals Society of China, 2020, 30, 392-404.	4.2	9
6	A new approach of abrasive wear performance of flame sprayed NiCrSiBFeC/SiC composite coating. Wear, 2021, 477, 203887.	3.1	9
7	High strength biomedical Ti–13Mo–6Sn alloy: Processing routes, microstructural evolution and mechanical behavior. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 764, 138190.	5.6	7
8	Texture Development in Cold Deformed and Recrystallized Ti–30Nb–4Sn Alloy and Its Effects on Hardness and Young's Modulus. Advanced Engineering Materials, 2017, 19, 1600058.	3.5	6
9	Phase transformation of Nb2O5 during the formation of flame sprayed coatings and its influence on the adhesion strength, abrasive wear and slurry erosive wear. Wear, 2019, 426-427, 277-284.	3.1	5
10	Exploring the Ti-5553 phase transformations utilizing in-situ high-temperature laser-scanning confocal microscopy. Materials Characterization, 2020, 159, 110013.	4.4	5
11	Proliferation of osteoblast precursor cells on the surface of TiO2 nanowires anodically grown on a β-type biomedical titanium alloy. Scientific Reports, 2022, 12, 7895.	3.3	4
12	Study of Laser Welding and Heat Treatments Done in Different High Strength Steels: 4340, 300M, Maraging 300. , 2013, , .		1
13	Soldagem a laser de aços de ultra-alta resistência. Revista Brasileira De Aplicações De Vácuo, 2015, 34, 60.	0.1	0