Myra E Conway

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/861974/publications.pdf Version: 2024-02-01

		430843	454934
32	1,074	18	30
papers	citations	h-index	g-index
32	32	32	1279
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The BCAT1 CXXC Motif Provides Protection against ROS in Acute Myeloid Leukaemia Cells. Antioxidants, 2022, 11, 683.	5.1	7
2	Amino Acids Branched-Chain Amino Metabolism. , 2021, , 10-21.		1
3	Differential expression of the BCAT isoforms between breast cancer subtypes. Breast Cancer, 2021, 28, 592-607.	2.9	7
4	Alzheimer's disease: targeting the glutamatergic system. Biogerontology, 2020, 21, 257-274.	3.9	96
5	BCAT-induced autophagy regulates AÎ ² load through an interdependence of redox state and PKC phosphorylation-implications in Alzheimer's disease. Free Radical Biology and Medicine, 2020, 152, 755-766.	2.9	11
6	Crystal structure of an oxidized mutant of human mitochondrial branched-chain aminotransferase. Acta Crystallographica Section F, Structural Biology Communications, 2020, 76, 14-19.	0.8	2
7	Redox-Regulated, Targeted Affinity Isolation of NADH-Dependent Protein Interactions with the Branched Chain Aminotransferase Proteins. Methods in Molecular Biology, 2019, 1990, 151-163.	0.9	5
8	Expression and localization of aquaporin water channels in adult pig urinary bladder. Journal of Cellular and Molecular Medicine, 2019, 23, 3772-3775.	3.6	10
9	Detection of S-Nitrosation and S-Glutathionylation of the Human Branched-Chain Aminotransferase Proteins. Methods in Molecular Biology, 2019, 1990, 71-84.	0.9	1
10	Distribution of the branched-chain α-ketoacid dehydrogenase complex E1α subunit and glutamate dehydrogenase in the human brain and their role in neuro-metabolism. Neurochemistry International, 2018, 112, 49-58.	3.8	21
11	Altered Expression of Human Mitochondrial Branched Chain Aminotransferase in Dementia with Lewy Bodies and Vascular Dementia. Neurochemical Research, 2017, 42, 306-319.	3.3	17
12	Enhanced task-related brain activation and resting perfusion in healthy older adults after chronic blueberry supplementation. Applied Physiology, Nutrition and Metabolism, 2017, 42, 773-779.	1.9	129
13	Divergent Metabolic Regulation of Autophagy and mTORC1—Early Events in Alzheimer's Disease?. Frontiers in Aging Neuroscience, 2017, 9, 173.	3.4	26
14	Evaluation of recombinant factor C assay for the detection of divergent lipopolysaccharide structural species and comparison with Limulus amebocyte lysate-based assays and a human monocyte activity assay. Journal of Medical Microbiology, 2017, 66, 888-897.	1.8	27
15	Decreased expression of the mitochondrial BCAT protein correlates with improved patient survival in IDHâ€WT gliomas. Brain Pathology, 2016, 26, 789-791.	4.1	8
16	The Cytosolic and Mitochondrial Branched Chain Aminotransferase. , 2015, , 25-40.		2
17	New insights into the role of the branchedâ€chain aminotransferase proteins in the human brain. Journal of Neuroscience Research, 2015, 93, 987-998	2.9	20
18	Regional Increase in the Expression of the BCAT Proteins in Alzheimer's Disease Brain: Implications in Glutamate Toxicity. Journal of Alzheimer's Disease, 2015, 45, 891-905.	2.6	28

Myra E Conway

#	Article	IF	CITATIONS
19	The redox switch that regulates molecular chaperones. Biomolecular Concepts, 2015, 6, 269-284.	2.2	28
20	Differential redox potential between the human cytosolic and mitochondrial branched-chain aminotransferase. Acta Biochimica Et Biophysica Sinica, 2012, 44, 172-176.	2.0	9
21	Distribution of the branched chain aminotransferase proteins in the human brain and their role in glutamate regulation. Journal of Neurochemistry, 2012, 123, 997-1009.	3.9	58
22	S-Nitrosoglutathione Inactivation of the Mitochondrial and Cytosolic BCAT Proteins: S-Nitrosation and S-Thiolation. Biochemistry, 2009, 48, 645-656.	2.5	39
23	Regulatory Control of Human Cytosolic Branched-Chain Aminotransferase by Oxidation and S-Glutathionylation and Its Interactions with Redox Sensitive Neuronal Proteins. Biochemistry, 2008, 47, 5465-5479.	2.5	41
24	Redox Regulation and Trapping Sulphenic Acid in the Peroxide Sensitive Human Mitochondrial Branched Chain Aminotransferase. Methods in Molecular Biology, 2008, 476, 135-148.	0.9	11
25	A Novel Branched-chain Amino Acid Metabolon. Journal of Biological Chemistry, 2007, 282, 11893-11903.	3.4	93
26	Human Mitochondrial Branched Chain Aminotransferase Isozyme. Journal of Biological Chemistry, 2006, 281, 39660-39671.	3.4	40
27	Structural Determinants for Branched-chain Aminotransferase Isozyme-specific Inhibition by the Anticonvulsant Drug Gabapentin. Journal of Biological Chemistry, 2005, 280, 37246-37256.	3.4	77
28	Roles for Cysteine Residues in the Regulatory CXXC Motif of Human Mitochondrial Branched Chain Aminotransferase Enzymeâ€. Biochemistry, 2004, 43, 7356-7364.	2.5	67
29	Human mitochondrial branched chain aminotransferase: structural basis for substrate specificity and role of redox active cysteines. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2003, 1647, 61-65.	2.3	31
30	Crystal Structures of Human Mitochondrial Branched Chain Aminotransferase Reaction Intermediates: Ketimine and Pyridoxamine Phosphate Formsâ€. Biochemistry, 2002, 41, 11592-11601.	2.5	39
31	Identification of a Peroxide-Sensitive Redox Switch at the CXXC Motif in the Human Mitochondrial Branched Chain Aminotransferaseâ€. Biochemistry, 2002, 41, 9070-9078.	2.5	42
32	Role of specific aminotransferases in de novo glutamate synthesis and redox shuttling in the retina. Journal of Neuroscience Research, 2001, 66, 914-922.	2.9	81