Chunying Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8619431/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CAMKK2 Defines Ferroptosis Sensitivity of Melanoma Cells by Regulating AMPK‒NRF2 Pathway. Journal of Investigative Dermatology, 2022, 142, 189-200.e8.	0.3	43
2	HSF1-Dependent Autophagy Activation Contributes to the Survival of Melanocytes Under Oxidative Stress in Vitiligo. Journal of Investigative Dermatology, 2022, 142, 1659-1669.e4.	0.3	12
3	Metabolomics Signature and Potential Application of Serum Polyunsaturated Fatty Acids Metabolism in Patients With Vitiligo. Frontiers in Immunology, 2022, 13, 839167.	2.2	4
4	Anatomically distinct fibroblast subsets determine skin autoimmune patterns. Nature, 2022, 601, 118-124.	13.7	83
5	Oxeiptosis: a novel pathway of melanocytes death in response to oxidative stress in vitiligo. Cell Death Discovery, 2022, 8, 70.	2.0	21
6	Integrative Genomic Profiling Uncovers Therapeutic Targets of Acral Melanoma in Asian Populations. Clinical Cancer Research, 2022, 28, 2690-2703.	3.2	10
7	Treatment of Cutaneous <i>Balamuthia mandrillaris</i> Infection With Diminazene Aceturate: A Report of 4 Cases. Clinical Infectious Diseases, 2022, 75, 1637-1640.	2.9	3
8	Nanoparticle delivery of miR-21-3p sensitizes melanoma to anti-PD-1 immunotherapy by promoting ferroptosis. , 2022, 10, e004381.		42
9	Th1-like Treg in vitiligo: An incompetent regulator in immune tolerance. Journal of Autoimmunity, 2022, 131, 102859.	3.0	6
10	Mechanisms of melanocyte death in vitiligo. Medicinal Research Reviews, 2021, 41, 1138-1166.	5.0	110
11	The XBP1‒MARCH5‒MFN2 Axis Confers Endoplasmic Reticulum Stress Resistance by Coordinating Mitochondrial Fission and Mitophagy in Melanoma. Journal of Investigative Dermatology, 2021, 141, 2932-2943.e12.	0.3	16
12	RIP1-Mediated Necroptosis Facilitates Oxidative Stress‒Induced Melanocyte Death, Offering Insight into Vitiligo. Journal of Investigative Dermatology, 2021, 141, 2921-2931.e6.	0.3	12
13	Interferon-α1b for the treatment of metastatic melanoma: results of a retrospective study. Anti-Cancer Drugs, 2021, 32, 1105-1110.	0.7	6
14	Clinical Features, Immunopathogenesis, and Therapeutic Strategies in Vitiligo. Clinical Reviews in Allergy and Immunology, 2021, 61, 299-323.	2.9	30
15	The Formation of Melanocyte Apoptotic Bodies in Vitiligo and the Relocation of Vitiligo Autoantigens under Oxidative Stress. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-13.	1.9	9
16	Folic Acid Protects Melanocytes from Oxidative Stress via Activation of Nrf2 and Inhibition of HMGB1. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-12.	1.9	11
17	Signal pathways of melanoma and targeted therapy. Signal Transduction and Targeted Therapy, 2021, 6, 424.	7.1	115
18	Long Non-Coding RNA CD27-AS1-208 Facilitates Melanoma Progression by Activating STAT3 Pathway. Frontiers in Oncology, 2021, 11, 818178.	1.3	3

#	Article	IF	CITATIONS
19	Clinical Significance of Serum Oxidative Stress Markers to Assess Disease Activity and Severity in Patients With Non-Segmental Vitiligo. Frontiers in Cell and Developmental Biology, 2021, 9, 739413.	1.8	15
20	Metastatic Melanoma Cells Rely on Sestrin2 to Acquire Anoikis Resistance via Detoxifying Intracellular ROS. Journal of Investigative Dermatology, 2020, 140, 666-675.e2.	0.3	18
21	Activated NLR family pyrin domain containing 3 (NLRP3) inflammasome in keratinocytes promotes cutaneous T-cell response in patients with vitiligo. Journal of Allergy and Clinical Immunology, 2020, 145, 632-645.	1.5	53
22	<i>Balamuthia mandrillaris</i> infection in China: a retrospective report of 28 cases. Emerging Microbes and Infections, 2020, 9, 2348-2357.	3.0	25
23	Tranilast Directly Targets NLRP3 to Protect Melanocytes From Keratinocyte-Derived IL-1β Under Oxidative Stress. Frontiers in Cell and Developmental Biology, 2020, 8, 588.	1.8	22
24	A20 promotes melanoma progression via the activation of Akt pathway. Cell Death and Disease, 2020, 11, 794.	2.7	13
25	Gut Microbial Dysbiosis and Plasma Metabolic Profile in Individuals With Vitiligo. Frontiers in Microbiology, 2020, 11, 592248.	1.5	22
26	A20 regulates the therapeutic effect of anti-PD-1 immunotherapy in melanoma. , 2020, 8, e001866.		13
27	POU4F1 promotes the resistance of melanoma to BRAF inhibitors through MEK/ERK pathway activation and MITF up-regulation. Cell Death and Disease, 2020, 11, 451.	2.7	15
28	Intracellular virus sensor MDA5 exacerbates vitiligo by inducing the secretion of chemokines in keratinocytes under virus invasion. Cell Death and Disease, 2020, 11, 453.	2.7	14
29	ATP-Citrate Lyase Epigenetically Potentiates Oxidative Phosphorylation to Promote Melanoma Growth and Adaptive Resistance to MAPK Inhibition. Clinical Cancer Research, 2020, 26, 2725-2739.	3.2	35
30	Genetic variants in the folate metabolic pathway genes predict cutaneous melanomaâ€specific survival. British Journal of Dermatology, 2020, 183, 719-728.	1.4	4
31	Genetic variants in <i>PDSS1</i> and <i>SLC16A6</i> of the ketone body metabolic pathway predict cutaneous melanomaâ€specific survival. Molecular Carcinogenesis, 2020, 59, 640-650.	1.3	9
32	Homocysteine induces melanocytes apoptosis via PERK–eIF2α–CHOP pathway in vitiligo. Clinical Science, 2020, 134, 1127-1141.	1.8	13
33	Impact of Interferon-alpha1b (IFN-α1b) on Antitumor Immune Response: An Interpretation of the Promising Therapeutic Effect of IFN-alpha1b on Melanoma. Medical Science Monitor, 2020, 26, e922790.	0.5	5
34	Ablative fractional Co ₂ laser aided delivery of long-acting glucocorticoid in the treatment of acral vitiligo: a multicenter, prospective, self-bilateral controlled study. Journal of Dermatological Treatment, 2019, 30, 320-327.	1.1	16
35	Role of the aryl hydrocarbon receptor signaling pathway in promoting mitochondrial biogenesis against oxidative damage in human melanocytes. Journal of Dermatological Science, 2019, 96, 33-41.	1.0	27
36	Oxidative Stress–Induced HMGB1 Release fromÂMelanocytes: A Paracrine Mechanism Underlying the Cutaneous Inflammation inÂVitiligo. Journal of Investigative Dermatology, 2019, 139, 2174-2184.e4.	0.3	64

#	Article	IF	CITATIONS
37	Ginkgo biloba extract protects human melanocytes from H ₂ O ₂ â€induced oxidative stress by activating Nrf2. Journal of Cellular and Molecular Medicine, 2019, 23, 5193-5199.	1.6	35
38	Oxidative stress-induced IL-15 trans-presentation in keratinocytes contributes to CD8+ T cells activation via JAK-STAT pathway in vitiligo. Free Radical Biology and Medicine, 2019, 139, 80-91.	1.3	52
39	SIRT3-Dependent Mitochondrial Dynamics Remodeling Contributes to Oxidative Stress-Induced Melanocyte Degeneration in Vitiligo. Theranostics, 2019, 9, 1614-1633.	4.6	92
40	Perspectives of New Advances in the Pathogenesis of Vitiligo: From Oxidative Stress to Autoimmunity. Medical Science Monitor, 2019, 25, 1017-1023.	0.5	92
41	Berberine protects immortalized line of human melanocytes from H2O2-induced oxidative stress via activation of Nrf2 and Mitf signaling pathway. Journal of Dermatological Science, 2019, 94, 236-243.	1.0	37
42	Genetic variants in <i>ELOVL2</i> and <i>HSD17B12</i> predict melanomaâ€specific survival. International Journal of Cancer, 2019, 145, 2619-2628.	2.3	11
43	Targeting MC1R depalmitoylation to prevent melanomagenesis in redheads. Nature Communications, 2019, 10, 877.	5.8	48
44	Downregulated TRPV1 Expression Contributes to Melanoma Growth via the Calcineurin-ATF3-p53 Pathway. Journal of Investigative Dermatology, 2018, 138, 2205-2215.	0.3	34
45	Upâ€regulated deubiquitinase <scp>USP</scp> 4 plays an oncogenic role in melanoma. Journal of Cellular and Molecular Medicine, 2018, 22, 2944-2954.	1.6	28
46	Aberrant SIRT6 expression contributes to melanoma growth: Role of the autophagy paradox and IGF-AKT signaling. Autophagy, 2018, 14, 518-533.	4.3	45
47	Baicalein protects human vitiligo melanocytes from oxidative stress through activation of NF-E2-related factor2 (Nrf2) signaling pathway. Free Radical Biology and Medicine, 2018, 129, 492-503.	1.3	69
48	MicroRNA-340 inhibits squamous cell carcinoma cell proliferation, migration and invasion by downregulating RhoA. Journal of Dermatological Science, 2018, 92, 197-206.	1.0	9
49	HOâ€1 regulates the function of Treg: Association with the immune intolerance in vitiligo. Journal of Cellular and Molecular Medicine, 2018, 22, 4335-4343.	1.6	27
50	MicroRNA-17-92 cluster promotes the proliferation and the chemokine production of keratinocytes: implication for the pathogenesis of psoriasis. Cell Death and Disease, 2018, 9, 567.	2.7	42
51	TRPM2 mediates mitochondria-dependent apoptosis of melanocytes under oxidative stress. Free Radical Biology and Medicine, 2018, 126, 259-268.	1.3	53
52	Identification of the Risk HLA-A Alleles and Autoantigen in Han Chinese Vitiligo Patients and the Association of CD8+T Cell Reactivity with Disease Characteristics. Medical Science Monitor, 2018, 24, 6489-6497.	0.5	6
53	Generalised nodules in pemphigoid nodularis. Lancet, The, 2017, 389, 1930.	6.3	3
54	Simvastatin Protects Human Melanocytes from H2O2-Induced Oxidative Stress byÂActivating Nrf2. Journal of Investigative Dermatology, 2017, 137, 1286-1296.	0.3	62

#	Article	IF	CITATIONS
55	Dysregulated autophagy increased melanocyte sensitivity to H2O2-induced oxidative stress in vitiligo. Scientific Reports, 2017, 7, 42394.	1.6	85
56	Genetic Variants in WNT2B and BTRC Predict Melanoma Survival. Journal of Investigative Dermatology, 2017, 137, 1749-1756.	0.3	5
57	Ubiquitination in melanoma pathogenesis and treatment. Cancer Medicine, 2017, 6, 1362-1377.	1.3	24
58	A similar local immune and oxidative stress phenotype in vitiligo and halo nevus. Journal of Dermatological Science, 2017, 87, 50-59.	1.0	36
59	Palmitoylation-dependent activation of MC1R prevents melanomagenesis. Nature, 2017, 549, 399-403.	13.7	143
60	Multiple pro-tumorigenic functions of the human minor Histocompatibility Antigen-1 (HA-1) in melanoma progression. Journal of Dermatological Science, 2017, 88, 216-224.	1.0	6
61	BIK is involved in BRAF/MEK inhibitor induced apoptosis in melanoma cell lines. Cancer Letters, 2017, 404, 70-78.	3.2	9
62	SOX4 Promotes Proliferative Signals by Regulating Glycolysis through AKT Activation in Melanoma Cells. Journal of Investigative Dermatology, 2017, 137, 2407-2416.	0.3	26
63	Proinflammatory effect of high-mobility group protein B1 onÂkeratinocytes: an autocrine mechanism underlying psoriasis development. Journal of Pathology, 2017, 241, 392-404.	2.1	38
64	Oxidative stress drives CD8 + T-cell skin trafficking in patients with vitiligo through CXCL16 upregulation by activating the unfolded protein response in keratinocytes. Journal of Allergy and Clinical Immunology, 2017, 140, 177-189.e9.	1.5	136
65	Down-regulated miR-23a Contributes to the Metastasis of Cutaneous Melanoma by Promoting Autophagy. Theranostics, 2017, 7, 2231-2249.	4.6	81
66	Combination with Î ³ -secretase inhibitor prolongs treatment efficacy of BRAF inhibitor in BRAF-mutated melanoma cells. Cancer Letters, 2016, 376, 43-52.	3.2	10
67	Aspirin induces Nrf2â€mediated transcriptional activation of haem oxygenaseâ€1 in protection of human melanocytes from H ₂ 0 ₂ â€induced oxidative stress. Journal of Cellular and Molecular Medicine, 2016, 20, 1307-1318.	1.6	50
68	Genetic polymorphism of the <i>Nrf2</i> promoter region is associated with vitiligo risk in Han Chinese populations. Journal of Cellular and Molecular Medicine, 2016, 20, 1840-1850.	1.6	28
69	Identification of Novel HLA-A*0201-Restricted CTL Epitopes in Chinese Vitiligo Patients. Scientific Reports, 2016, 6, 36360.	1.6	6
70	Xeroderma Pigmentosum Group A Promotes Autophagy to Facilitate Cisplatin Resistance in Melanoma Cells through the Activation of PARP1. Journal of Investigative Dermatology, 2016, 136, 1219-1228.	0.3	28
71	Serum miR-16: A Potential Biomarker for Predicting Melanoma Prognosis. Journal of Investigative Dermatology, 2016, 136, 985-993.	0.3	44
72	Oxidative stress-induced overexpression of miR-25: the mechanism underlying the degeneration of melanocytes in vitiligo. Cell Death and Differentiation, 2016, 23, 496-508.	5.0	84

#	Article	IF	CITATIONS
73	Vitiligo: How do oxidative stress-induced autoantigens trigger autoimmunity?. Journal of Dermatological Science, 2016, 81, 3-9.	1.0	147
74	Is UV an etiological factor of acral melanoma?. Journal of Exposure Science and Environmental Epidemiology, 2016, 26, 539-545.	1.8	24
75	AHR promoter variant modulates its transcription and downstream effectors by allele-specific AHR-SP1 interaction functioning as a genetic marker for vitiligo. Scientific Reports, 2015, 5, 13542.	1.6	21
76	Oxidative Stress-Induced Chemokine Production Mediates CD8+ T Cell Skin Trafficking in Vitiligo. Journal of Investigative Dermatology Symposium Proceedings, 2015, 17, 32-33.	0.8	19
77	Oxidative Stress–Induced Calreticulin Expression and Translocation: New Insights into the Destruction of Melanocytes. Journal of Investigative Dermatology, 2014, 134, 183-191.	0.3	74
78	Impaired Activation of the Nrf2-ARE Signaling Pathway Undermines H2O2-Induced Oxidative Stress Response: A Possible Mechanism for Melanocyte Degeneration in Vitiligo. Journal of Investigative Dermatology, 2014, 134, 2221-2230.	0.3	145
79	Polymorphisms of Nucleotide Excision Repair Genes Predict Melanoma Survival. Journal of Investigative Dermatology, 2013, 133, 1813-1821.	0.3	43
80	Heme Oxygenase-1 Protects Human Melanocytes from H2O2-Induced Oxidative Stress via the Nrf2-ARE Pathway. Journal of Investigative Dermatology, 2011, 131, 1420-1427.	0.3	147
81	Vitiligo Autoantigen VIT75 Is Identified as Lamin A in Vitiligo by Serological Proteome Analysis Based on Mass Spectrometry. Journal of Investigative Dermatology, 2011, 131, 727-734.	0.3	17
82	The Six-Nucleotide Deletion/Insertion Variant in the CASP8 Promoter Region Is Inversely Associated with Risk of Squamous Cell Carcinoma of the Head and Neck. Cancer Prevention Research, 2010, 3, 246-253.	0.7	31
83	DNA repair phenotype and cancer susceptibility—A mini review. International Journal of Cancer, 2009, 124, 999-1007.	2.3	84
84	Genetic variants and haplotypes of thecaspase-8andcaspase-10genes contribute to susceptibility to cutaneous melanoma. Human Mutation, 2008, 29, 1443-1451.	1.1	49
85	Haplotype and genotypes of the <i>VDR</i> gene and cutaneous melanoma risk in nonâ€Hispanic whites in Texas: A case–control study. International Journal of Cancer, 2008, 122, 2077-2084.	2.3	58
86	Functional Polymorphisms of the FAS Gene Associated with Risk of Vitiligo in Chinese Populations: A Case–Control Analysis. Journal of Investigative Dermatology, 2008, 128, 2820-2824.	0.3	23
87	Polymorphisms of the neuronal and inducible nitric oxide synthase genes and the risk of cutaneous melanoma. Cancer, 2007, 109, 1570-1578.	2.0	24
88	Genetic polymorphisms in DNA baseâ€excision repair genes <i>ADPRT</i> , <i>XRCC1</i> , and <i>APE1</i> and the risk of squamous cell carcinoma of the head and neck. Cancer, 2007, 110, 867-875.	2.0	70
89	Genetic Variants of the Vitamin D Receptor Gene Alter Risk of Cutaneous Melanoma. Journal of Investigative Dermatology, 2007, 127, 276-280.	0.3	50
90	TNF-α Gene Promoter -238G>A and -308G>A Polymorphisms Alter Risk of Psoriasis Vulgaris: A Meta-Analysis. Journal of Investigative Dermatology, 2007, 127, 1886-1892.	0.3	51

#	ARTICLE	IF	CITATIONS
91	Vitiligo prevalence study in Shaanxi Province, China. International Journal of Dermatology, 2007, 46, 47-51.	0.5	57
92	Genetic variants of the ADPRT, XRCC1 and APE1 genes and risk of cutaneous melanoma. Carcinogenesis, 2006, 27, 1894-1901.	1.3	77
93	Polymorphisms of the FAS and FAS ligand genes associated with risk of cutaneous malignant melanoma. Pharmacogenetics and Genomics, 2006, 16, 253-263.	0.7	44
94	Polymorphisms in the DNA Repair Genes XPC, XPD, and XPG and Risk of Cutaneous Melanoma: a Case-Control Analysis. Cancer Epidemiology Biomarkers and Prevention, 2006, 15, 2526-2532.	1.1	80
95	The Efficacy and Psychoneuroimmunology Mechanism of Camouflage Combined With Psychotherapy in Vitiligo Treatment. Frontiers in Medicine, 0, 9, .	1.2	1