
Manuela T JuÃ;rez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8619083/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Milk fatty acids and potential health benefits: An updated vision. Trends in Food Science and Technology, 2018, 81, 1-9.	7.8	145
2	Biochemical and Microbiological Characteristics of Artisanal Hard Goat's Cheese. Journal of Dairy Science, 1990, 73, 1150-1157.	1.4	138
3	Fatty Acid Composition of Caprine Milk: Major, Branched-Chain, and Trans Fatty Acids. Journal of Dairy Science, 1999, 82, 878-884.	1.4	138
4	Authenticity Assessment of Dairy Products. Critical Reviews in Food Science and Nutrition, 2005, 45, 563-585.	5.4	115
5	Milk and Dairy Product Consumption and Cardiovascular Diseases: An Overview of Systematic Reviews and Meta-Analyses. Advances in Nutrition, 2019, 10, S164-S189.	2.9	96
6	Total and soluble contents of calcium, magnesium, phosphorus and zinc in yoghurts. Food Chemistry, 2003, 80, 573-578.	4.2	69
7	Characterization of cis-9 trans-11 trans-15 C18:3 in milk fat by GC and covalent adduct chemical ionization tandem MS. Journal of Lipid Research, 2009, 50, 2412-2420.	2.0	62
8	Changes in the milk and cheese fat composition of ewes fed commercial supplements containing linseed with special reference to the CLA content and isomer composition. Lipids, 2005, 40, 445-454.	0.7	60
9	Fatty acid composition of the triglyceride and free fatty acid fractions in different cows-, ewes- and goats-milk cheeses. Zeitschrift Fur Lebensmittel-Untersuchung Und -Forschung, 1993, 196, 155-158.	0.7	58
10	Comparison of the Fatty Acid Profiles in Cheeses from Ewes Fed Diets Supplemented with Different Plant Oils. Journal of Agricultural and Food Chemistry, 2010, 58, 10493-10502.	2.4	57
11	Identity of the major triacylglycerols in ovine milk fat. International Dairy Journal, 2005, 15, 1217-1224.	1.5	54
12	Conjugated Linoleic Acid in Processed Cheeses during the Manufacturing Stages. Journal of Agricultural and Food Chemistry, 2005, 53, 2690-2695.	2.4	49
13	Gas chromatographic method for determining free fatty acids in cheese. Chromatographia, 1988, 25, 87-90.	0.7	47
14	Infrared and Raman Spectroscopic Study of Casein in Cheese: Effect of Freezing and Frozen Storage. Journal of Dairy Science, 1993, 76, 3303-3309.	1.4	47
15	Conjugated linoleic acid content and isomer distribution during ripening in three varieties of cheeses protected with designation of origin. Food Chemistry, 2007, 103, 1465-1472.	4.2	47
16	Changes in lipolysis and volatile fraction of a goat cheese manufactured employing a hygienized rennet paste and a defined strain starter. Food Chemistry, 2007, 100, 590-598.	4.2	46
17	Effect of diet supplementation with sunflower oil on milk production, fatty acid profile and ruminal fermentation in lactating dairy ewes. Journal of Dairy Research, 2008, 75, 399-405.	0.7	46
18	Determination of mixtures in vegetable oils and milk fat by analysis of sterol fraction by gas chromatography. JAOCS, Journal of the American Oil Chemists' Society, 1997, 74, 131-135.	0.8	45

Manuela T JuÃirez

#	Article	IF	CITATIONS
19	Triglyceride analysis by gas chromatography in assessment of authenticity of goat milk fat. JAOCS, Journal of the American Oil Chemists' Society, 1998, 75, 1893-1896.	0.8	42
20	Composition of goat's milk fat triglycerides analysed by silver ion adsorption-TLC and GC–MS. International Dairy Journal, 2000, 10, 119-128.	1.5	42
21	Influence of diets rich in flax seed and sunflower oil on the fatty acid composition of ewes' milk fat especially on the level of conjugated linoleic acid, n-3 and n-6 fatty acids. International Dairy Journal, 2008, 18, 99-107.	1.5	41
22	Rapid determination of calcium, magnesium, sodium and potassium in milk by flame atomic spectrometry after microwave oven digestion. Analyst, The, 1995, 120, 107-111.	1.7	40
23	Use of β-cyclodextrin to decrease the level of cholesterol in milk fat. Journal of Dairy Science, 2009, 92, 863-869.	1.4	40
24	Conjugated linoleic acid in ewe milk fat. Journal of Dairy Research, 2005, 72, 415-424.	0.7	39
25	Chromatographic techniques to determine conjugated linoleic acid isomers. TrAC - Trends in Analytical Chemistry, 2006, 25, 917-926.	5.8	39
26	Effects of high pressure and heat treatment on the mineral balance of goats' milk. Journal of Dairy Research, 1999, 66, 65-72.	0.7	37
27	Determination of phosphorus in dairy products by sample wet digestion in a microwave oven. Analytica Chimica Acta, 1995, 309, 355-359.	2.6	33
28	Quantitative characterization of unsaturated and trans fatty acids in ewe's milk fat. Dairy Science and Technology, 2004, 84, 473-482.	0.9	31
29	Partition of Main and Trace Minerals in Milk:Â Effect of Ultracentrifugation, Rennet Coagulation, and Dialysis on Soluble Phase Separation. Journal of Agricultural and Food Chemistry, 1996, 44, 1988-1992.	2.4	29
30	TAG composition of ewe's milk fat. Detection of foreign fats. JAOCS, Journal of the American Oil Chemists' Society, 2003, 80, 219-222.	0.8	29
31	Triacylglycerol Composition of Protected Designation of Origin Cheeses During Ripening. Authenticity of Milk Fat. Journal of Dairy Science, 2006, 89, 882-887.	1.4	29
32	Effect of freezing and frozen storage on the physicochemical, organoleptic and microbiological characteristics of a semi-hard ewes' milk cheese. Journal of Dairy Research, 1994, 61, 133-142.	0.7	28
33	Effects of freezing and frozen storage on the microstructure and texture of ewe's milk cheese. European Food Research and Technology, 1996, 203, 245-251.	0.6	26
34	Acute oral safety study of dairy fat rich in trans-10 C18:1 versus vaccenic plus conjugated linoleic acid in rats. Food and Chemical Toxicology, 2010, 48, 591-598.	1.8	26
35	Improved gas chromatographic method for the determination of the individual free fatty acids in cheese using a capillary column and a PTV injector. Chromatographia, 1992, 33, 351-355.	0.7	25
36	Effect of Different Membrane Separation Technologies (Ultrafiltration and Microfiltration) on the Texture and Microstructure of Semihard Low-Fat Cheeses. Journal of Agricultural and Food Chemistry, 1999, 47, 558-565.	2.4	25

Manuela T JuÃirez

#	Article	IF	CITATIONS
37	Autolysis of Lactococcus lactis ssp. lactis and Lactobacillus casei ssp. casei. Cell lysis induced by a crude bacteriocin. International Journal of Food Microbiology, 1997, 38, 125-131.	2.1	24
38	Isomerization of lactose catalyzed by alkaline-substituted sepiolites. Food Chemistry, 1999, 66, 301-306.	4.2	24
39	Composition of cholesterol and its precursors in ovine milk. Dairy Science and Technology, 2003, 83, 153-160.	0.9	24
40	Use of an extremely polar 100-m column in combination with a cyanoalkyl polysiloxane column to complement the study of milk fats with different fatty acid profiles. International Dairy Journal, 2015, 47, 52-63.	1.5	23
41	Fatty acid and conjugated linoleic acid isomer profiles in human milk fat. European Journal of Lipid Science and Technology, 2007, 109, 1160-1166.	1.0	21
42	Biochemical characteristics of a semi-hard ewe's-milk cheese. Zeitschrift Fur Lebensmittel-Untersuchung Und -Forschung, 1994, 198, 24-28.	0.7	20
43	Manganese and Zinc Analysis in Milk by Microwave Oven Digestion and Platform Graphite Furnace Atomic Absorption Spectrometry. Journal of Agricultural and Food Chemistry, 1995, 43, 2406-2410.	2.4	20
44	Salt Balance in Ewe's and Goat's Milk during Storage at Chilling and Freezing Temperatures. Journal of Agricultural and Food Chemistry, 1997, 45, 82-88.	2.4	20
45	Determination of Major Minerals in Dairy Products Digested in Closed Vessels Using Microwave Heating. Journal of Dairy Science, 1997, 80, 806-811.	1.4	19
46	Composition of the sterol fraction of caprine milk fat by gas chromatography and mass spectrometry. Journal of Dairy Research, 2000, 67, 437-441.	0.7	18
47	Bioactive Milk Lipids. Current Nutrition and Food Science, 2011, 7, 155-159.	0.3	18
48	Effects of milk fat replacement by PUFA enriched fats onn-3 fatty acids, conjugated dienes and volatile compounds of fermented milks. European Journal of Lipid Science and Technology, 2004, 106, 417-423.	1.0	17
49	Mineral Balance in Milk Heated Using Microwave Energy. Journal of Agricultural and Food Chemistry, 2002, 50, 2274-2277.	2.4	16
50	Use of changes in triacylglycerols during ripening of cheeses with high lipolysis levels for detection of milk fat authenticity. International Dairy Journal, 2006, 16, 1498-1504.	1.5	16
51	Odd- and branched-chain fatty acids in goat milk as indicators of the diet composition. Italian Journal of Animal Science, 2017, 16, 68-74.	0.8	16
52	A 4-Week Repeated Oral Dose Toxicity Study of Dairy Fat Naturally Enriched in Vaccenic, Rumenic and α-Linolenic Acids in Rats. Journal of Agricultural and Food Chemistry, 2011, 59, 8036-8046.	2.4	15
53	Determination of cholesterol in milk fat by gas chromatography with direct injection and sample saponification. Chromatographia, 1995, 41, 23-28.	0.7	14
54	Development of a Headspace Gas Chromatographic–Mass Spectrometric Method for Determining Methyl-Ketones and Secondary Alcohols in Blue Cheese. Journal of Chromatographic Science, 1999, 37, 108-112.	0.7	13

Manuela T JuÃirez

#	Article	IF	CITATIONS
55	Gas chromatography and silver-ion high-performance liquid chromatography analysis of conjugated linoleic acid isomers in free fatty acid form using sulphuric acid in methanol as catalyst. Journal of Chromatography A, 2008, 1204, 110-113.	1.8	13
56	Mineral contents and distribution between the soluble and the micellar phases in calcium-enriched UHT milks. Journal of the Science of Food and Agriculture, 2004, 84, 1708-1714.	1.7	12
57	Considerations of the quantitative aspect of the determination of milkfat triglycerides with split PTV and on-column injection. Journal of High Resolution Chromatography, 1995, 18, 771-775.	2.0	10
58	Probiotic supplementation effects on milk fatty acid profile in ewes. Journal of Dairy Research, 2017, 84, 128-131.	0.7	10
59	Effect of artisanal kid rennet paste on lipolysis in semi-hard goat cheese. Food Chemistry, 2006, 98, 253-259.	4.2	9
60	Associations between major fatty acids in plant oils fed to dairy goats and C18 isomers in milk fat. Journal of Dairy Research, 2015, 82, 152-160.	0.7	9
61	Salt Balance and Rennet Clotting Properties of Cow's, Ewe's, and Goat's Milks Preserved with Carbon Dioxide. Journal of Food Protection, 1998, 61, 66-72.	0.8	8
62	Oral Absorption and Disposition of alpha‣inolenic, Rumenic and Vaccenic Acids After Administration as a Naturally Enriched Goat Dairy Fat to Rats. Lipids, 2015, 50, 659-666.	0.7	8
63	Distribution of nitrogen in goats' milk and use of capillary electrophoresis to determine casein fractions. Journal of Dairy Research, 2000, 67, 113-117.	0.7	6
64	Effects of heat treatments and subsequent storage on the mineral balance of ewes' milk. Journal of Dairy Research, 1998, 65, 457-464.	0.7	5
65	Recent Advances in Dairy Ingredients and Cardiovascular Diseases With Special Reference to Milk Fat Components. , 2017, , 251-261.		5
66	Commercial Conjugated Linoleic Acid (CLA) Fortified Dairy Products. , 2013, , 173-184.		5
67	Quick changes of milk fatty acids after inclusion or suppression of linseed oil in the diet of goats. Journal of the Science of Food and Agriculture, 2018, 98, 5269-5277.	1.7	3
68	Ripening changes in Ras cheese prepared from ultrafiltered milk. Zeitschrift Fur Lebensmittel-Untersuchung Und -Forschung, 1990, 191, 310-312.	0.7	2
69	Conjugated Linoleic Acid. , 2012, , 747-768.		0