
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8618986/publications.pdf Version: 2024-02-01

ENCLEONC TAN

#	Article	IF	CITATIONS
1	Same-Sense Circularly Polarized Grid-Slotted Patch Antenna With Wide Axial Ratio Bandwidth. IEEE Transactions on Antennas and Propagation, 2022, 70, 1494-1498.	3.1	3
2	Improved Fourier Modal Method Analyzing 2-D Ultrathin Periodic Structures Without Solving Eigenvalues. IEEE Microwave and Wireless Components Letters, 2022, 32, 273-276.	2.0	0
3	From Time-Collocated to Leapfrog Fundamental Schemes for ADI and CDI FDTD Methods. Axioms, 2022, 11, 23.	0.9	10
4	Fundamental Equations of Electromagnetics Using Field-Impulses as Physical Field-Integrators. IEEE Transactions on Antennas and Propagation, 2022, 70, 3450-3458.	3.1	2
5	Efficient Implementation of Fourier Modal Method for 2-D Periodic Structures. IEEE Microwave and Wireless Components Letters, 2022, 32, 375-378.	2.0	0
6	Incident Plane-Wave Source Formulations for Leapfrog Complying-Divergence Implicit FDTD Method. IEEE Journal on Multiscale and Multiphysics Computational Techniques, 2022, 7, 84-91.	1.4	6
7	A Leapfrog Scheme for Complying-Divergence Implicit Finite-Difference Time-Domain Method. IEEE Antennas and Wireless Propagation Letters, 2021, 20, 853-857.	2.4	13
8	Power divider with wideband harmonic suppression for centerâ€fed antenna arrays. Microwave and Optical Technology Letters, 2021, 63, 3008.	0.9	3
9	Fundamental Leapfrog ADI and CDI FDTD Methods. , 2021, , .		3
10	Multi-GPU based Leapfrog CDI-FDTD Method for Large-Scale Electromagnetic Problems. , 2021, , .		5
11	Mobile Apps, Online Assessments and Examination for Electromagnetics Education. , 2021, , .		0
12	Multiple LOD-FDTD Method for Inhomogeneous Coupled Transmission Lines and Stability Analyses. IEEE Transactions on Antennas and Propagation, 2020, 68, 2198-2205.	3.1	4
13	Demonstration of Electromagnetic Plane Wave Reflection and Transmission on iPad. , 2020, , .		Ο
14	Multiple LOD-FDTD Method for Multiconductor Coupled Transmission Lines. IEEE Journal on Multiscale and Multiphysics Computational Techniques, 2020, 5, 201-208.	1.4	6
15	Mobile Teaching and Learning of Coupled-Line Structures: The multiple-1D coupled-line finite-difference time-domain method. IEEE Antennas and Propagation Magazine, 2020, 62, 62-69.	1.2	3
16	Comparison of Vector Fitting and Contour Integration Methods for Pole-Zero Analysis of Microwave Filters. , 2020, , .		0
17	FUNDAMENTAL IMPLICIT FDTD SCHEMES FOR COMPUTATIONAL ELECTROMAGNETICS AND EDUCATIONAL MOBILE APPS (INVITED REVIEW). Progress in Electromagnetics Research, 2020, 168, 39-59.	1.6	22

18 Numerical Stability Analysis of M1-D ADI-FDTD Method for Coupled Transmission Lines. , 2019, , .

ENG LEONG TAN

#	Article	IF	CITATIONS
19	M1-D FDTD Methods for Mobile Interactive Teaching and Learning of Wave Propagation in Transmission Lines [Education Corner]. IEEE Antennas and Propagation Magazine, 2019, 61, 119-126.	1.2	5
20	Teaching and Learning Electromagnetic Plane Wave Reflection and Transmission Using 3D TV [Education Corner]. IEEE Antennas and Propagation Magazine, 2019, 61, 101-108.	1.2	6
21	Source-Incorporated M1-D FADI-FDTD Method for Coupled Transmission Lines. , 2019, , .		0
22	Bidirectional Linearly Polarized Grid-slotted Patch Antenna with Gielis-shaped Patch. , 2019, , .		1
23	Multiple 1-D Fundamental ADI-FDTD Method for Coupled Transmission Lines on Mobile Devices. IEEE Journal on Multiscale and Multiphysics Computational Techniques, 2019, 4, 198-206.	1.4	8
24	Simulation of Coupled Transmission Lines on Mobile Devices using Multiple One-Dimensional Coupled Line FDTD Methods. , 2019, , .		0
25	Design of Planar Mushroom-Shaped Wideband Monopole Antenna Using Gielis Curves. , 2018, , .		0
26	Multiple One-Dimensional Finite-Difference Time-Domain Method for Asymmetric Coupled Transmission Lines. , 2018, , .		0
27	Most energy-efficient input voltage function for RC delay line. , 2018, , .		2
28	Unconditionally Stable Multiple One-Dimensional ADI-FDTD Method for Coupled Transmission Lines. IEEE Transactions on Antennas and Propagation, 2018, 66, 7488-7492.	3.1	13
29	Design of Wideband Bowtie Slot Antenna Using Sectorially Modified Gielis Curves. IEEE Antennas and Wireless Propagation Letters, 2018, 17, 2237-2240.	2.4	10
30	Application of Belevitch Theorem for Pole-Zero Analysis of Microwave Filters With Transmission Lines and Lumped Elements. IEEE Transactions on Microwave Theory and Techniques, 2018, 66, 4669-4676.	2.9	7
31	1 to 4 Way wideband power divider using substrate integrated waveguide and modified Wilkinson structures. , 2018, , .		2
32	Demonstration of electromagnetic waves propagation along transmission lines on iPad. , 2018, , .		1
33	Teaching and Learning Electromagnetic Polarization Using Mobile Devices [Education Corner]. IEEE Antennas and Propagation Magazine, 2018, 60, 112-121.	1.2	11
34	Interconnected Multi-1-D FADI- and FLOD-FDTD Methods for Transmission Lines With Interjunctions. IEEE Transactions on Microwave Theory and Techniques, 2017, 65, 684-692.	2.9	16
35	Non-uniform Time-Step FLOD-FDTD Method for Multiconductor Transmission Lines Including Lumped Elements. IEEE Transactions on Electromagnetic Compatibility, 2017, 59, 1983-1992.	1.4	8
36	Stability analyses of non-uniform time-step schemes for ADI- and LOD-FDTD methods. , 2017, , .		5

#	Article	IF	CITATIONS
37	Demonstration of electromagnetic polarization app on iPad. , 2017, , .		6
38	Mobile device aided teaching and learning of electromagnetic polarization. , 2017, , .		1
39	Optimum lowest input energy for first-order circuits in transient state. , 2017, , .		3
40	Stability Analyses of Nonuniform Time-Step LOD-FDTD Methods for Electromagnetic and Thermal Simulations. IEEE Journal on Multiscale and Multiphysics Computational Techniques, 2017, 2, 183-193.	1.4	13
41	Compact combined antenna with slit for monopolar input pulse. , 2017, , .		0
42	Tunable Raman soliton beyond 2 Micron. , 2017, , .		0
43	3-D unified FLOD-FDTD method incorporated with lumped elements. , 2017, , .		Ο
44	High-efficiency femtosecond Raman soliton generation with a tunable wavelength beyond 2  μm. Opti Letters, 2017, 42, 1568.	^{CS} 1.7	28
45	DESIGN OF DUAL-BAND FILTERS WITH INDIVIDUALLY CONTROLLABLE PASSBAND RESPONSES AND ORDERS. Progress in Electromagnetics Research B, 2016, 68, 17-33.	0.7	1
46	Variants of second-order temporal-accurate 3-D FLOD-FDTD schemes with three split matrices. , 2016, , .		0
47	Complex-envelope LOD-FDTD method for ionospheric propagation. , 2016, , .		5
48	A De-embedding technique for diode-incorporated reconfigurable antenna simulation. , 2016, , .		0
49	Dual-band filter design with pole-zero distribution in the complex frequency plane. , 2016, , .		2
50	Fast alternating direction implicit method for efficient transient thermal simulation of integrated circuits. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 2016, 29, 93-108.	1.2	6
51	Multiple One-Dimensional FDTD Method for Coupled Transmission Lines and Stability Condition. IEEE Microwave and Wireless Components Letters, 2016, 26, 864-866.	2.0	17
52	3â€D nonâ€uniform time step locally oneâ€dimensional FDTD method. Electronics Letters, 2016, 52, 993-994.	0.5	5
53	Mid-IR supercontinuum pumped by femtosecond pulses from thulium doped all-fiber amplifier. Optics Express, 2016, 24, 13939.	1.7	26
54	Temporal and spatial deviation in <i>F</i> ₂ peak parameters derived from FORMOSATâ€3/COSMIC. Space Weather, 2016, 14, 391-405.	1.3	11

#	Article	IF	CITATIONS
55	Derivation of the Most Energy-Efficient Source Functions by Using Calculus of Variations. IEEE Transactions on Circuits and Systems I: Regular Papers, 2016, 63, 494-502.	3.5	5
56	Mid-IR Supercontinuum Generation Pumped by Femtosecond Thulium Doped Fiber Amplifier. , 2016, , .		0
57	Efficient 3-D Fundamental LOD-FDTD Method Incorporated with Memristor. IEICE Transactions on Electronics, 2016, E99.C, 788-792.	0.3	3
58	TWO FINITE-DIFFERENCE TIME-DOMAIN METHODS INCORPORATED WITH MEMRISTOR. Progress in Electromagnetics Research M, 2015, 42, 153-158.	0.5	3
59	A microwave transmission line courseware based on multiple 1-D FDTD method on mobile devices. , 2015, , .		9
60	Upgrading LOD-FDTD to efficient method with second-order accuracy. , 2015, , .		0
61	Application of the fundamental LOD2-CD-FDTD method for antenna modeling. , 2015, , .		1
62	A fundamental ADI-FDTD method with implicit update for magnetic fields in the second procedure. , 2015, , .		1
63	Second-Order Temporal-Accurate Scheme for 3-D LOD-FDTD Method With Three Split Matrices. IEEE Antennas and Wireless Propagation Letters, 2015, 14, 1105-1108.	2.4	6
64	A Microstrip Circuit Tool Kit App with FDTD Analysis Including Lumped Elements. IEEE Microwave Magazine, 2015, 16, 74-80.	0.7	28
65	Impacts of solar activity on performance of the IRI-2012 model predictions from low to mid latitudes. Earth, Planets and Space, 2015, 67, .	0.9	50
66	On the field leakage of the leapfrog ADIâ€FDTD method for nonpenetrable targets. Microwave and Optical Technology Letters, 2014, 56, 1401-1405.	0.9	8
67	Novel dual-band dual-prototype bandpass filter. Microwave and Optical Technology Letters, 2014, 56, 1496-1498.	0.9	4
68	Pentadiagonal alternating-direction-implicit finite-difference time-domain method for two-dimensional SchrĶdinger equation. Computer Physics Communications, 2014, 185, 1886-1892.	3.0	13
69	Divergence-Preserving Alternating Direction Implicit Scheme for Multi-Pole Debye Dispersive Media. IEEE Microwave and Wireless Components Letters, 2014, 24, 69-71.	2.0	6
70	Efficient 3-D fundamental LOD-FDTD method with lumped elements. , 2014, , .		3
71	Further Reinterpretation of Multi-Stage Implicit FDTD Schemes. IEEE Transactions on Antennas and Propagation, 2014, 62, 4407-4411.	3.1	4
72	An efficient total-field/scattered-field technique for the fundamental ADI-FDTD method. , 2014, , .		3

#	Article	IF	CITATIONS
73	Validation of the IRI-2012 model with GPS-based ground observation over a low-latitude Singapore station. Earth, Planets and Space, 2014, 66, .	0.9	44
74	Fundamental Locally One-Dimensional Method for 3-D Thermal Simulation. IEICE Transactions on Electronics, 2014, E97.C, 636-644.	0.3	7
75	Stable Formulation of FADI-FDTD Method for Multiterm, Doubly, Second-Order Dispersive Media. IEEE Transactions on Antennas and Propagation, 2013, 61, 4167-4175.	3.1	13
76	Novel Ultraâ€Wideband Filter Using Coplanarâ€Waveguideâ€Toâ€Microstrip Transition and Stubs. Microwave and Optical Technology Letters, 2013, 55, 2269-2271.	0.9	4
77	A polarization-reconfigurable filtering antenna system: a visual approach to investigating the bandwidth of transmission lines with non-z0 impedance [education column]. IEEE Antennas and Propagation Magazine, 2013, 55, 197-235.	1.2	5
78	Unconditionally Stable Fundamental LOD-FDTD Method With Second-Order Temporal Accuracy and Complying Divergence. IEEE Transactions on Antennas and Propagation, 2013, 61, 2630-2638.	3.1	30
79	Convolutional perfectly matched layer (CPML) for fundamental LOD-FDTD method with 2 nd order temporal accuracy and complying divergence. , 2013, , .		0
80	Split-step finite-difference time-domain method with perfectly matched layers for efficient analysis of two-dimensional photonic crystals with anisotropic media. Optics Letters, 2012, 37, 326.	1.7	4
81	Fundamental ADI-FDTD method for multiple-pole Debye dispersive media. , 2012, , .		1
82	Divergence of electric field or the two-dimensional (2-D) leapfrog ADI-FDTD method. , 2012, , .		4
83	Mur absorbing boundary condition for 2-D leapfrog ADI-FDTD method. , 2012, , .		7
84	Out-of-band conducted susceptibility measurement and analysis of VHF/FM communication system. , 2012, , .		1
85	Current source implementations for fundamental SS2-FDTD method. , 2012, , .		2
86	A low cost omnidirectional high gain active integrated antenna for WLAN applications. , 2012, , .		3
87	Graphical Analysis of Stabilization Loss and Gains for Three-Port Networks. IEEE Transactions on Microwave Theory and Techniques, 2012, 60, 1635-1640.	2.9	6
88	Efficient algorithm or 3-D thermal alternating-direction-implicit method. , 2012, , .		1
89	Some recent developments in fundamental implicit FDTD schemes. , 2012, , .		3
90	Analysis of the Divergence Properties for the Three-Dimensional Leapfrog ADI-FDTD Method. IEEE Transactions on Antennas and Propagation, 2012, 60, 5801-5808.	3.1	22

#	Article	IF	CITATIONS
91	UNCONDITIONALLY STABLE LEAPFROG ADI-FDTD METHOD FOR LOSSY MEDIA. Progress in Electromagnetics Research M, 2012, 26, 173-786.	0.5	23
92	MODELING THE INTERACTION OF TERAHERTZ PULSE WITH HEALTHY SKIN AND BASAL CELL CARCINOMA USING THE UNCONDITIONALLY STABLE FUNDAMENTAL ADI-FDTD METHOD. Progress in Electromagnetics Research B, 2012, 37, 365-386.	0.7	16
93	STABILITY AND DISPERSION ANALYSIS FOR THREE-DIMENSIONAL (3-D) LEAPFROG ADI-FDTD METHOD. Progress in Electromagnetics Research M, 2012, 23, 1-12.	0.5	24
94	RFID enabled handheld solution for aerospace MRO operations track and trace. , 2011, , .		3
95	Analytic Fields With Higher-Order Compensations for 3-D FDTD TF/SF Formulation With Application to Beam Excitations. IEEE Transactions on Antennas and Propagation, 2011, 59, 2588-2598.	3.1	7
96	Efficient Complex Envelope ADI-FDTD Method for the Analysis of Anisotropic Photonic Crystals. IEEE Photonics Technology Letters, 2011, 23, 801-803.	1.3	5
97	Lyapunov and Matrix Norm Stability Analysis of ADI-FDTD Schemes for Doubly Lossy Media. IEEE Transactions on Antennas and Propagation, 2011, 59, 979-986.	3.1	8
98	Modeling hemoglobin at optical frequency using the unconditionally stable fundamental ADI-FDTD method. Biomedical Optics Express, 2011, 2, 1169.	1.5	7
99	Modeling magnetic photonic crystals with lossy ferrites using an efficient complex envelope alternating-direction-implicit finite-difference time-domain method. Optics Letters, 2011, 36, 1494.	1.7	7
100	Investigation and suppression of the pump-to-Stokes relative intensity noise transfer in chalcogenide waveguide Raman laser. Optics Letters, 2011, 36, 2366.	1.7	0
101	UNIFIED EFFICIENT FUNDAMENTAL ADI-FDTD SCHEMES FOR LOSSY MEDIA. Progress in Electromagnetics Research B, 2011, 32, 217-242.	0.7	13
102	A NOVEL DUAL-BAND BANDPASS FILTER USING GENERALIZED TRISECTION STEPPED IMPEDANCE RESONATOR WITH IMPROVED OUT-OF-BAND PERFORMANCE. Progress in Electromagnetics Research Letters, 2011, 21, 31-40.	0.4	7
103	DESIGN OF BROADBAND CIRCULAR POLARIZATION TRUNCATED HORN ANTENNA WITH SINGLE FEED. Progress in Electromagnetics Research C, 2011, 24, 197-206.	0.6	7
104	Analytic fields of a focused beam with higher-order compensations for FDTD TF/SF formulation. , 2011,		0
105	A novel multipassband filter using asymmetric radial stubs. Microwave and Optical Technology Letters, 2010, 52, 2819-2821.	0.9	1
106	Generalized eigenproblem of hybrid matrix for Floquet wave propagation in one-dimensional phononic crystals with solids and fluids. Ultrasonics, 2010, 50, 91-98.	2.1	18
107	GPU-ACCELERATED FUNDAMENTAL ADI-FDTD WITH COMPLEX FREQUENCY SHIFTED CONVOLUTIONAL PERFECTLY MATCHED LAYER. Progress in Electromagnetics Research M, 2010, 14, 177-192.	0.5	21
108	Generalized Stability Criterion of 3-D FDTD Schemes for Doubly Lossy Media. IEEE Transactions on Antennas and Propagation, 2010, 58, 1421-1425.	3.1	5

#	Article	IF	CITATIONS
109	A Split-Step FDTD Method for 3-D Maxwell's Equations in General Anisotropic Media. IEEE Transactions on Antennas and Propagation, 2010, 58, 3647-3657.	3.1	16
110	Acceleration of LOD-FDTD Method Using Fundamental Scheme on Graphics Processor Units. IEEE Microwave and Wireless Components Letters, 2010, 20, 648-650.	2.0	33
111	Mur Absorbing Boundary Condition for Efficient Fundamental 3-D LOD-FDTD. IEEE Microwave and Wireless Components Letters, 2010, 20, 61-63.	2.0	14
112	Simplified parameter extraction method for modeling on-chip spiral inductors. , 2010, , .		0
113	DISPERSION ANALYSIS OF FDTD SCHEMES FOR DOUBLY LOSSY MEDIA. Progress in Electromagnetics Research B, 2009, 17, 327-342.	0.7	11
114	Implementation of mur first order absorbing boundary condition in efficient 3-D ADI-FDTD. Digest / IEEE Antennas and Propagation Society International Symposium, 2009, , .	0.0	3
115	Implementation of total-field/scattered-field technique in the 2-D LOD-FDTD method. , 2009, , .		4
116	Split-field PML implementation for the efficient fundamental ADI-FDTD method. , 2009, , .		2
117	Efficient tensor based FDTD scheme for modeling sloped interfaces in lossy media. Microwave and Optical Technology Letters, 2009, 51, 1530-1537.	0.9	0
118	Simple and stable analysis of multilayered anisotropic materials for design of absorbers and shields. Materials & Design, 2009, 30, 2061-2066.	5.1	11
119	Generalized eigenproblem of hybrid matrix for Bloch-Floquet waves in one-dimensional photonic crystals. Journal of the Optical Society of America B: Optical Physics, 2009, 26, 676.	0.9	11
120	Modeling Debye dispersive media using efficient ADI-FDTD method. Digest / IEEE Antennas and Propagation Society International Symposium, 2009, , .	0.0	3
121	FDTD Modeling for Dispersive Media Using Matrix Exponential Method. IEEE Microwave and Wireless Components Letters, 2009, 19, 53-55.	2.0	13
122	Efficient implementation of 3-D ADI-FDTD method for lossy media. , 2009, , .		8
123	Corrected Impulse Invariance Method in Z-Transform Theory for Frequency-Dependent FDTD Methods. IEEE Transactions on Antennas and Propagation, 2009, 57, 2683-2690.	3.1	9
124	Efficient Algorithms for Crank–Nicolson-Based Finite-Difference Time-Domain Methods. IEEE Transactions on Microwave Theory and Techniques, 2008, 56, 408-413.	2.9	48
125	Fundamental Schemes for Efficient Unconditionally Stable Implicit Finite-Difference Time-Domain Methods. IEEE Transactions on Antennas and Propagation, 2008, 56, 170-177.	3.1	183

126 Corrected impulse invariance method for dispersive media using FDTD. , 2008, , .

1

#	Article	IF	CITATIONS
127	Hybrid Matrix Method for Stable Analysis of Electromagnetic Waves in Stratified Bianisotropic Media. IEEE Microwave and Wireless Components Letters, 2008, 18, 653-655.	2.0	21
128	Split-Step Finite-Difference Time-Domain Method with fourth order accuracy in time. , 2008, , .		4
129	Modeling Lorentz dispersive media in FDTD using the exponential time differencing method. , 2008, , .		3
130	ADI-FDTD Method With Fourth Order Accuracy in Time. IEEE Microwave and Wireless Components Letters, 2008, 18, 296-298.	2.0	20
131	Generalized eigenproblem of hybrid matrix method for stable analysis of periodic multilayered bianisotropic media. , 2008, , .		1
132	GENERALIZED EIGENPROBLEM FOR ACOUSTIC WAVE PROPAGATION IN PERIODICALLY LAYERED ANISOTROPIC MEDIA. Journal of Computational Acoustics, 2008, 16, 1-10.	1.0	5
133	Geometrical stability criteria for two-port networks in invariant immittance parameters representation. , 2008, , .		1
134	Matrix Algorithms for Modeling Acoustic Waves in Piezoelectric Multilayers. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2007, 54, 2016-2023.	1.7	23
135	Unconditionally Stable LOD–FDTD Method for 3-D Maxwell's Equations. IEEE Microwave and Wireless Components Letters, 2007, 17, 85-87.	2.0	166
136	Concise Current Source Implementation for Efficient 3-D ADI-FDTD Method. IEEE Microwave and Wireless Components Letters, 2007, 17, 748-750.	2.0	16
137	Stability and Dispersion Analysis for ADI-FDTD Method in Lossy Media. IEEE Transactions on Antennas and Propagation, 2007, 55, 1095-1102.	3.1	27
138	Efficient Algorithm for the Unconditionally Stable 3-D ADI–FDTD Method. IEEE Microwave and Wireless Components Letters, 2007, 17, 7-9.	2.0	33
139	Fully integrated frequency synthesizer design for wireless network application with digital programmability. Microwave and Optical Technology Letters, 2007, 49, 2579-2582.	0.9	3
140	Hybrid compliance-stiffness matrix method for stable analysis of elastic wave propagation in multilayered anisotropic media. Journal of the Acoustical Society of America, 2006, 119, 45-53.	0.5	57
141	Hybrid-matrix algorithm for rigorous coupled-wave analysis of multilayered diffraction gratings. Journal of Modern Optics, 2006, 53, 417-428.	0.6	16
142	Unconditionally Stable FDTD Technique Including Passive Lumped Elements. , 2006, , .		1
143	Enhanced R-matrix algorithms for multilayered diffraction gratings. Applied Optics, 2006, 45, 4803.	2.1	5
144	Unconditionally Stable ADI-FDTD Method Including Passive Lumped Elements. IEEE Transactions on Electromagnetic Compatibility, 2006, 48, 661-668.	1.4	22

#	Article	IF	CITATIONS
145	Alternative implementation of combined-field integral equation using Rao–Wilton–Glisson basis functions for conducting scatterers. Microwave and Optical Technology Letters, 2006, 48, 753-756.	0.9	1
146	Quasi-invariant single-parameter criterion for unconditional stability: Review and application. , 2006, ,		4
147	A compact higher-order ADI-FDTD method. Microwave and Optical Technology Letters, 2005, 44, 273-275.	0.9	18
148	LC oscillator design at 10-GHz using substrate capacitance with scalable varactor parameters extraction technique. , 2005, , .		4
149	Stiffness matrix method with improved efficiency for elastic wave propagation in layered anisotropic media. Journal of the Acoustical Society of America, 2005, 118, 3400-3403.	0.5	40
150	Simple derivation and proof of geometrical stability criteria for linear two-ports. Microwave and Optical Technology Letters, 2004, 40, 81-83.	0.9	8
151	Reduced conditions for the constitutive parameters of lossy bi-anisotropic media. Microwave and Optical Technology Letters, 2004, 41, 133-135.	0.9	5
152	A concise and efficient scattering matrix formalism for stable analysis of elastic wave propagation in multilayered anisotropic solids. Ultrasonics, 2003, 41, 229-236.	2.1	25
153	Note on formulation of the enhanced scattering- (transmittance-) matrix approach. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2002, 19, 1157.	0.8	35
154	A robust formulation of SAW Green's functions for arbitrarily thick multilayers at high frequencies. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2002, 49, 929-936.	1.7	29
155	Unbounded and scattered field representations of the Dyadic Green's functions for planar stratified bianisotropic media. IEEE Transactions on Antennas and Propagation, 2001, 49, 1218-1225.	3.1	16
156	Dyadic Green's functions for circular waveguides filled with biisotropic media. IEEE Transactions on Microwave Theory and Techniques, 1999, 47, 1134-1137.	2.9	6
157	Coordinate-independent dyadic formulation of the dispersion relation for bianisotropic media. IEEE Transactions on Antennas and Propagation, 1999, 47, 1820-1824.	3.1	6