Zebin Guo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8618912/publications.pdf Version: 2024-02-01

ZERIN CUO

#	Article	lF	CITATIONS
1	Study on the Flavor Compounds of Fo Tiao Qiang under Different Thawing Methods Based on GC–IMS and Electronic Tongue Technology. Foods, 2022, 11, 1330.	4.3	5
2	Structural, physicochemical properties, and digestibility of lotus seed starch-conjugated linoleic acid complexes. International Journal of Biological Macromolecules, 2022, 214, 601-609.	7.5	8
3	Effect of homogenization-pressure-assisted enzymatic hydrolysis on the structural and physicochemical properties of lotus-seed starch nanoparticles. International Journal of Biological Macromolecules, 2021, 167, 1579-1586.	7.5	23
4	Structural characteristics and emulsifying properties of myofibrillar protein-dextran conjugates induced by ultrasound Maillard reaction. Ultrasonics Sonochemistry, 2021, 72, 105458.	8.2	70
5	Insights into the multi-scale structural properties and digestibility of lotus seed starch-chlorogenic acid complexes prepared by microwave irradiation. Food Chemistry, 2021, 361, 130171.	8.2	35
6	The Effect of Vacuum Deep Frying Technology and Raphanus sativus on the Quality of Surimi Cubes. Foods, 2021, 10, 2544.	4.3	3
7	Structural properties of lotus seed starch prepared by octenyl succinic anhydride esterification assisted by high hydrostatic pressure treatment. LWT - Food Science and Technology, 2020, 117, 108698.	5.2	17
8	Properties of lotus seed starch-glycerin monostearin V-complexes after long-term retrogradation. Food Chemistry, 2020, 311, 125887.	8.2	17
9	Structural and physicochemical properties of lotus seed starch nanoparticles prepared using ultrasonic-assisted enzymatic hydrolysis. Ultrasonics Sonochemistry, 2020, 68, 105199.	8.2	30
10	Insight into the formation mechanism of lotus seed starch-lecithin complexes by dynamic high-pressure homogenization. Food Chemistry, 2020, 315, 126245.	8.2	35
11	Impact of combined ultrasound-microwave treatment on structural and functional properties of golden threadfin bream (Nemipterus virgatus) myofibrillar proteins and hydrolysates. Ultrasonics Sonochemistry, 2020, 65, 105063.	8.2	78
12	Structural and physicochemical properties of lotus seed starch nanoparticles. International Journal of Biological Macromolecules, 2020, 157, 240-246.	7.5	36
13	Effect of two-step microwave heating on the gelation properties of golden threadfin bream (Nemipterus virgatus) myosin. Food Chemistry, 2020, 328, 127104.	8.2	35
14	Ratiometric Fluorescent Nanoprobe for Highly Sensitive Determination of Mercury Ions. Molecules, 2019, 24, 2278.	3.8	8
15	Structure and dilatational rheological behavior of heat-treated lotus (Nelumbo nucifera Gaertn.) seed protein. LWT - Food Science and Technology, 2019, 116, 108579.	5.2	11
16	Insight into the characterization and digestion of lotus seed starch-tea polyphenol complexes prepared under high hydrostatic pressure. Food Chemistry, 2019, 297, 124992.	8.2	56
17	Effects and mechanism of high-pressure homogenization on the characterization and digestion behavior of lotus seed starch–green tea polyphenol complexes. Journal of Functional Foods, 2019, 57, 173-181	3.4	44
18	Gelation properties and thermal gelling mechanism of golden threadfin bream myosin containing CaCl2 induced by high pressure processing. Food Hydrocolloids, 2019, 95, 43-52.	10.7	58

ZEBIN GUO

#	Article	IF	CITATIONS
19	κ-Carrageenan hexamer have significant anti-inflammatory activity and protect RAW264.7 Macrophages by inhibiting CD14. Journal of Functional Foods, 2019, 57, 335-344.	3.4	13
20	Optimization of ultrasound-microwave synergistic extraction of prebiotic oligosaccharides from sweet potatoes (Ipomoea batatas L.). Innovative Food Science and Emerging Technologies, 2019, 54, 51-63.	5.6	48
21	Effects of high pressure processing on gelation properties and molecular forces of myosin containing deacetylated konjac glucomannan. Food Chemistry, 2019, 291, 117-125.	8.2	70
22	Insight into the formation, structure and digestibility of lotus seed amylose-fatty acid complexes prepared by high hydrostatic pressure. Food and Chemical Toxicology, 2019, 128, 81-88.	3.6	48
23	Using polysaccharides for the enhancement of functionality of foods: A review. Trends in Food Science and Technology, 2019, 86, 311-327.	15.1	86
24	Physicochemical Properties and Digestion of Lotus Seed Starch under High-Pressure Homogenization. Nutrients, 2019, 11, 371.	4.1	25
25	Effect of ultra-high pressure on the structure and gelling properties of low salt golden threadfin bream (Nemipterus virgatus) myosin. LWT - Food Science and Technology, 2019, 100, 381-390.	5.2	43
26	Physicochemical properties and digestion of the lotus seed starch-green tea polyphenol complex under ultrasound-microwave synergistic interaction. Ultrasonics Sonochemistry, 2019, 52, 50-61.	8.2	91
27	Proteomic Analysis Reveals Inflammation Modulation of κ/ι-Carrageenan Hexaoses in Lipopolysaccharide-Induced RAW264.7 Macrophages. Journal of Agricultural and Food Chemistry, 2018, 66, 4758-4767.	5.2	18
28	Slowly digestible properties of lotus seed starch-glycerine monostearin complexes formed by high pressure homogenization. Food Chemistry, 2018, 252, 115-125.	8.2	45
29	Paste structure and rheological properties of lotus seed starch–glycerin monostearate complexes formed by high-pressure homogenization. Food Research International, 2018, 103, 380-389.	6.2	45
30	Chemical composition and nutritional function of olive (Olea europaea L.): a review. Phytochemistry Reviews, 2018, 17, 1091-1110.	6.5	55
31	Understanding the crystal structure of lotus seed amylose–long-chain fatty acid complexes prepared by high hydrostatic pressure. Food Research International, 2018, 111, 334-341.	6.2	42
32	Preparation and characterization of lotus seed starch-fatty acid complexes formed by microfluidization. Journal of Food Engineering, 2018, 237, 52-59.	5.2	53
33	Structural and thermal properties of amylose–fatty acid complexes prepared via high hydrostatic pressure. Food Chemistry, 2018, 264, 172-179.	8.2	36
34	Properties of lotus seed starch–glycerin monostearin complexes formed by high pressure homogenization. Food Chemistry, 2017, 226, 119-127.	8.2	71
35	Separation of Oligosaccharides from Lotus Seeds via Medium-pressure Liquid Chromatography Coupled with ELSD and DAD. Scientific Reports, 2017, 7, 44174.	3.3	9
36	Câ€ŧype starches and their derivatives: structure and function. Annals of the New York Academy of Sciences, 2017, 1398, 47-61.	3.8	22

ZEBIN GUO

#	Article	IF	CITATIONS
37	Lateral flow test for visual detection of silver(I) based on cytosine-Ag(I)-cytosine interaction in C-rich oligonucleotides. Mikrochimica Acta, 2017, 184, 4243-4250.	5.0	17
38	Structural characteristics and prebiotic effects of Semen coicis resistant starches (type 3) prepared by different methods. International Journal of Biological Macromolecules, 2017, 105, 671-679.	7.5	22
39	In Vitro Antioxidant Activity and In Vivo Anti-Fatigue Effect of Sea Horse (Hippocampus) Peptides. Molecules, 2017, 22, 482.	3.8	43
40	Effect of Alkaloids from Nelumbinis Plumula against Insulin Resistance of High-Fat Diet-Induced Nonalcoholic Fatty Liver Disease in Mice. Journal of Diabetes Research, 2016, 2016, 1-7.	2.3	9
41	Effect of Microwave Irradiation on the Physicochemical and Digestive Properties of Lotus Seed Starch. Journal of Agricultural and Food Chemistry, 2016, 64, 2442-2449.	5.2	69
42	Structural and physicochemical properties of lotus seed starch treated with ultra-high pressure. Food Chemistry, 2015, 186, 223-230.	8.2	141
43	Effects of water-soluble oligosaccharides extracted from lotus (Nelumbo nucifera Gaertn.) seeds on growth ability of Bifidobacterium adolescentis. European Food Research and Technology, 2015, 241, 459-467.	3.3	9
44	Nutritional composition, physiological functions and processing of lotus (Nelumbo nucifera Gaertn.) seeds: a review. Phytochemistry Reviews, 2015, 14, 321-334.	6.5	87
45	The effects of ultra-high pressure on the structural, rheological and retrogradation properties of lotus seed starch. Food Hydrocolloids, 2015, 44, 285-291.	10.7	100
46	Carbon nanotube-based lateral flow biosensor for sensitive and rapid detection of DNA sequence. Biosensors and Bioelectronics, 2015, 64, 367-372.	10.1	120