Zebin Guo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8618912/publications.pdf

Version: 2024-02-01

46 papers 2,006 citations

172207 29 h-index 243296 44 g-index

46 all docs

46 docs citations

46 times ranked 1678 citing authors

#	Article	IF	CITATIONS
1	Structural and physicochemical properties of lotus seed starch treated with ultra-high pressure. Food Chemistry, 2015, 186, 223-230.	4.2	141
2	Carbon nanotube-based lateral flow biosensor for sensitive and rapid detection of DNA sequence. Biosensors and Bioelectronics, 2015, 64, 367-372.	5.3	120
3	The effects of ultra-high pressure on the structural, rheological and retrogradation properties of lotus seed starch. Food Hydrocolloids, 2015, 44, 285-291.	5.6	100
4	Physicochemical properties and digestion of the lotus seed starch-green tea polyphenol complex under ultrasound-microwave synergistic interaction. Ultrasonics Sonochemistry, 2019, 52, 50-61.	3.8	91
5	Nutritional composition, physiological functions and processing of lotus (Nelumbo nucifera Gaertn.) seeds: a review. Phytochemistry Reviews, 2015, 14, 321-334.	3.1	87
6	Using polysaccharides for the enhancement of functionality of foods: A review. Trends in Food Science and Technology, 2019, 86, 311-327.	7.8	86
7	Impact of combined ultrasound-microwave treatment on structural and functional properties of golden threadfin bream (Nemipterus virgatus) myofibrillar proteins and hydrolysates. Ultrasonics Sonochemistry, 2020, 65, 105063.	3.8	78
8	Properties of lotus seed starch–glycerin monostearin complexes formed by high pressure homogenization. Food Chemistry, 2017, 226, 119-127.	4.2	71
9	Effects of high pressure processing on gelation properties and molecular forces of myosin containing deacetylated konjac glucomannan. Food Chemistry, 2019, 291, 117-125.	4.2	70
10	Structural characteristics and emulsifying properties of myofibrillar protein-dextran conjugates induced by ultrasound Maillard reaction. Ultrasonics Sonochemistry, 2021, 72, 105458.	3.8	70
11	Effect of Microwave Irradiation on the Physicochemical and Digestive Properties of Lotus Seed Starch. Journal of Agricultural and Food Chemistry, 2016, 64, 2442-2449.	2.4	69
12	Gelation properties and thermal gelling mechanism of golden threadfin bream myosin containing CaCl2 induced by high pressure processing. Food Hydrocolloids, 2019, 95, 43-52.	5.6	58
13	Insight into the characterization and digestion of lotus seed starch-tea polyphenol complexes prepared under high hydrostatic pressure. Food Chemistry, 2019, 297, 124992.	4.2	56
14	Chemical composition and nutritional function of olive (Olea europaea L.): a review. Phytochemistry Reviews, 2018, 17, 1091-1110.	3.1	55
15	Preparation and characterization of lotus seed starch-fatty acid complexes formed by microfluidization. Journal of Food Engineering, 2018, 237, 52-59.	2.7	53
16	Optimization of ultrasound-microwave synergistic extraction of prebiotic oligosaccharides from sweet potatoes (Ipomoea batatas L.). Innovative Food Science and Emerging Technologies, 2019, 54, 51-63.	2.7	48
17	Insight into the formation, structure and digestibility of lotus seed amylose-fatty acid complexes prepared by high hydrostatic pressure. Food and Chemical Toxicology, 2019, 128, 81-88.	1.8	48
18	Slowly digestible properties of lotus seed starch-glycerine monostearin complexes formed by high pressure homogenization. Food Chemistry, 2018, 252, 115-125.	4.2	45

#	Article	IF	Citations
19	Paste structure and rheological properties of lotus seed starch–glycerin monostearate complexes formed by high-pressure homogenization. Food Research International, 2018, 103, 380-389.	2.9	45
20	Effects and mechanism of high-pressure homogenization on the characterization and digestion behavior of lotus seed starch–green tea polyphenol complexes. Journal of Functional Foods, 2019, 57, 173-181.	1.6	44
21	In Vitro Antioxidant Activity and In Vivo Anti-Fatigue Effect of Sea Horse (Hippocampus) Peptides. Molecules, 2017, 22, 482.	1.7	43
22	Effect of ultra-high pressure on the structure and gelling properties of low salt golden threadfin bream (Nemipterus virgatus) myosin. LWT - Food Science and Technology, 2019, 100, 381-390.	2.5	43
23	Understanding the crystal structure of lotus seed amylose–long-chain fatty acid complexes prepared by high hydrostatic pressure. Food Research International, 2018, 111, 334-341.	2.9	42
24	Structural and thermal properties of amylose–fatty acid complexes prepared via high hydrostatic pressure. Food Chemistry, 2018, 264, 172-179.	4.2	36
25	Structural and physicochemical properties of lotus seed starch nanoparticles. International Journal of Biological Macromolecules, 2020, 157, 240-246.	3.6	36
26	Insight into the formation mechanism of lotus seed starch-lecithin complexes by dynamic high-pressure homogenization. Food Chemistry, 2020, 315, 126245.	4.2	35
27	Insights into the multi-scale structural properties and digestibility of lotus seed starch-chlorogenic acid complexes prepared by microwave irradiation. Food Chemistry, 2021, 361, 130171.	4.2	35
28	Effect of two-step microwave heating on the gelation properties of golden threadfin bream (Nemipterus virgatus) myosin. Food Chemistry, 2020, 328, 127104.	4.2	35
29	Structural and physicochemical properties of lotus seed starch nanoparticles prepared using ultrasonic-assisted enzymatic hydrolysis. Ultrasonics Sonochemistry, 2020, 68, 105199.	3.8	30
30	Physicochemical Properties and Digestion of Lotus Seed Starch under High-Pressure Homogenization. Nutrients, 2019, 11, 371.	1.7	25
31	Effect of homogenization-pressure-assisted enzymatic hydrolysis on the structural and physicochemical properties of lotus-seed starch nanoparticles. International Journal of Biological Macromolecules, 2021, 167, 1579-1586.	3.6	23
32	Câ€type starches and their derivatives: structure and function. Annals of the New York Academy of Sciences, 2017, 1398, 47-61.	1.8	22
33	Structural characteristics and prebiotic effects of Semen coicis resistant starches (type 3) prepared by different methods. International Journal of Biological Macromolecules, 2017, 105, 671-679.	3.6	22
34	Proteomic Analysis Reveals Inflammation Modulation of $\hat{\mathbb{P}}/\hat{\mathbb{P}}$ -Carrageenan Hexaoses in Lipopolysaccharide-Induced RAW264.7 Macrophages. Journal of Agricultural and Food Chemistry, 2018, 66, 4758-4767.	2.4	18
35	Lateral flow test for visual detection of silver(I) based on cytosine-Ag(I)-cytosine interaction in C-rich oligonucleotides. Mikrochimica Acta, 2017, 184, 4243-4250.	2.5	17
36	Structural properties of lotus seed starch prepared by octenyl succinic anhydride esterification assisted by high hydrostatic pressure treatment. LWT - Food Science and Technology, 2020, 117, 108698.	2.5	17

#	Article	IF	CITATIONS
37	Properties of lotus seed starch-glycerin monostearin V-complexes after long-term retrogradation. Food Chemistry, 2020, 311, 125887.	4.2	17
38	\hat{I}^2 -Carrageenan hexamer have significant anti-inflammatory activity and protect RAW264.7 Macrophages by inhibiting CD14. Journal of Functional Foods, 2019, 57, 335-344.	1.6	13
39	Structure and dilatational rheological behavior of heat-treated lotus (Nelumbo nucifera Gaertn.) seed protein. LWT - Food Science and Technology, 2019, 116, 108579.	2.5	11
40	Effects of water-soluble oligosaccharides extracted from lotus (Nelumbo nucifera Gaertn.) seeds on growth ability of Bifidobacterium adolescentis. European Food Research and Technology, 2015, 241, 459-467.	1.6	9
41	Effect of Alkaloids from Nelumbinis Plumula against Insulin Resistance of High-Fat Diet-Induced Nonalcoholic Fatty Liver Disease in Mice. Journal of Diabetes Research, 2016, 2016, 1-7.	1.0	9
42	Separation of Oligosaccharides from Lotus Seeds via Medium-pressure Liquid Chromatography Coupled with ELSD and DAD. Scientific Reports, 2017, 7, 44174.	1.6	9
43	Ratiometric Fluorescent Nanoprobe for Highly Sensitive Determination of Mercury lons. Molecules, 2019, 24, 2278.	1.7	8
44	Structural, physicochemical properties, and digestibility of lotus seed starch-conjugated linoleic acid complexes. International Journal of Biological Macromolecules, 2022, 214, 601-609.	3.6	8
45	Study on the Flavor Compounds of Fo Tiao Qiang under Different Thawing Methods Based on GC–IMS and Electronic Tongue Technology. Foods, 2022, 11, 1330.	1.9	5
46	The Effect of Vacuum Deep Frying Technology and Raphanus sativus on the Quality of Surimi Cubes. Foods, 2021, 10, 2544.	1.9	3