Oleksii Shemchuk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8618887/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Inhibition of the Antibiotic Activity of Cephalosporines by Co-Crystallization with Thymol. Crystal Growth and Design, 2022, 22, 1467-1475.	1.4	8
2	Embroidering Ionic Cocrystals with Polyiodide Threads: The Peculiar Outcome of the Mechanochemical Reaction between Alkali Iodides and Cyanuric Acid. Crystal Growth and Design, 2022, 22, 2759-2767.	1.4	2
3	Combining Racetams with a Sweetener through Complexation. Crystal Growth and Design, 2022, 22, 3016-3023.	1.4	2
4	Steps towards a nature inspired inorganic crystal engineering. Dalton Transactions, 2022, , .	1.6	8
5	Proflavine and zinc chloride "team chemistryâ€i combining antibacterial agents via solid-state interaction. CrystEngComm, 2021, 23, 4494-4499.	1.3	9
6	Solvent Effect on the Preparation of Ionic Cocrystals of <scp>dl</scp> -Amino Acids with Lithium Chloride: Conglomerate versus Racemate Formation. Crystal Growth and Design, 2021, 21, 3438-3448.	1.4	14
7	Chiral Resolution via Cocrystallization with Inorganic Salts. Israel Journal of Chemistry, 2021, 61, 563-572.	1.0	10
8	Simultaneous Chiral Resolution of Two Racemic Compounds by Preferential Cocrystallization**. Angewandte Chemie - International Edition, 2021, 60, 20264-20268.	7.2	18
9	Simultaneous Chiral Resolution of Two Racemic Compounds by Preferential Cocrystallization**. Angewandte Chemie, 2021, 133, 20426-20430.	1.6	1
10	Mechanochemical Preparation and Solid-State Characterization of 1:1 and 2:1 Ionic Cocrystals of Cyanuric Acid with Alkali Halides. Crystal Growth and Design, 2020, 20, 7230-7237.	1.4	5
11	Co-crystallization of racemic amino acids with ZnCl ₂ : an investigation of chiral selectivity upon coordination to the metal centre. CrystEngComm, 2020, 22, 5613-5619.	1.3	7
12	Natural Antimicrobials Meet a Synthetic Antibiotic: Carvacrol/Thymol and Ciprofloxacin Cocrystals as a Promising Solid-State Route to Activity Enhancement. Crystal Growth and Design, 2020, 20, 6796-6803.	1.4	22
13	Kabachnik–Fields Reaction by Mechanochemistry: New Horizons from Old Methods. ACS Sustainable Chemistry and Engineering, 2020, 8, 18889-18902.	3.2	18
14	Chiral Resolution of <i>RS-</i> Oxiracetam upon Cocrystallization with Pharmaceutically Acceptable Inorganic Salts. Crystal Growth and Design, 2020, 20, 2602-2607.	1.4	18
15	Co-crystallization of antibacterials with inorganic salts: paving the way to activity enhancement. RSC Advances, 2020, 10, 2146-2149.	1.7	18
16	Improving solubility and storage stability of rifaximin <i>via</i> solid-state solvation with Transcutol®. CrystEngComm, 2019, 21, 5278-5283.	1.3	9
17	Ionic Cocrystals of Levodopa and Its Biological Precursors <scp>I</scp> -Tyrosine and <scp>I</scp> -Phenylalanine with LiCl. Crystal Growth and Design, 2019, 19, 6560-6565.	1.4	5
18	Ionic Cocrystals of Etiracetam and Levetiracetam: The Importance of Chirality for Ionic Cocrystals. Crystal Growth and Design, 2019, 19, 2446-2454.	1.4	17

Oleksii Shemchuk

#	Article	IF	CITATIONS
19	Mechanochemical preparation of molecular and ionic co-crystals of the hormone melatonin. CrystEngComm, 2019, 21, 2949-2954.	1.3	9
20	Novel Dual-Action Plant Fertilizer and Urease Inhibitor: Urea·Catechol Cocrystal. Characterization and Environmental Reactivity. ACS Sustainable Chemistry and Engineering, 2019, 7, 2852-2859.	3.2	42
21	Organic–inorganic ionic co-crystals: a new class of multipurpose compounds. CrystEngComm, 2018, 20, 2212-2220.	1.3	65
22	Solid-state chiral resolution mediated by stoichiometry: crystallizing etiracetam with ZnCl ₂ . Chemical Communications, 2018, 54, 10890-10892.	2.2	20
23	Ionic Coâ€Crystal Formation as a Path Towards Chiral Resolution in the Solid State. Chemistry - A European Journal, 2018, 24, 12564-12573.	1.7	21
24	Smart urea ionic co-crystals with enhanced urease inhibition activity for improved nitrogen cycle management. Chemical Communications, 2018, 54, 7637-7640.	2.2	41
25	Anhydrous ionic co-crystals of cyanuric acid with LiCl and NaCl. CrystEngComm, 2017, 19, 1366-1369.	1.3	25
26	Molecular Salts of I-Carnosine: Combining a Natural Antioxidant and Geroprotector with "Generally Regarded as Safe―(GRAS) Organic Acids. Crystal Growth and Design, 2017, 17, 3379-3386.	1.4	4
27	Expanding the Pool of Multicomponent Crystal Forms of the Antibiotic 4-Aminosalicylic Acid: The Influence of Crystallization Conditions. Crystal Growth and Design, 2017, 17, 6417-6425.	1.4	6
28	lonic co-crystals of enantiopure and racemic histidine with calcium halides. CrystEngComm, 2017, 19, 6267-6273.	1.3	14
29	Alloying barbituric and thiobarbituric acids: from solid solutions to a highly stable keto co-crystal form. Chemical Communications, 2016, 52, 11815-11818.	2.2	29
30	Ionic Cocrystals of Racemic and Enantiopure Histidine: An Intriguing Case of Homochiral Preference. Crystal Growth and Design, 2016, 16, 7263-7270.	1.4	25
31	<scp>l</scp> -Proline, a resolution agent able to target both enantiomers of mandelic acid: an exciting case of stoichiometry controlled chiral resolution. Chemical Communications, 0, , .	2.2	5