
Kevin J Mchugh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/861855/publications.pdf Version: 2024-02-01

KEVIN I MCHUCH

#	Article	IF	CITATIONS
1	Theranostic nanoparticles with disease-specific administration strategies. Nano Today, 2022, 42, 101335.	11.9	54
2	Bright, Magnetic NIR-II Quantum Dot Probe for Sensitive Dual-Modality Imaging and Intensive Combination Therapy of Cancer. ACS Nano, 2022, 16, 8076-8094.	14.6	31
3	Aqueous synthesis of bright near-infrared-emitting Zn-Cu-In-Se quantum dots for multiplexed detection of tumor markers. Nano Research, 2022, 15, 8351-8359.	10.4	3
4	Influence of injection technique, drug formulation and tumor microenvironment on intratumoral immunotherapy delivery and efficacy. , 2021, 9, e001800.		59
5	Employing Drug Delivery Strategies to Overcome Challenges Using TLR7/8 Agonists for Cancer Immunotherapy. AAPS Journal, 2021, 23, 90.	4.4	19
6	Novel Vaccine Adjuvants as Key Tools for Improving Pandemic Preparedness. Bioengineering, 2021, 8, 155.	3.5	13
7	Nanotechnology-enhanced immunotherapy for metastatic cancer. Innovation(China), 2021, 2, 100174.	9.1	29
8	Chiral Supraparticles for Controllable Nanomedicine. Advanced Materials, 2020, 32, e1903878.	21.0	118
9	Modeling, design, and machine learning-based framework for optimal injectability of microparticle-based drug formulations. Science Advances, 2020, 6, eabb6594.	10.3	42
10	Engineered PLGA microparticles for long-term, pulsatile release of STING agonist for cancer immunotherapy. Science Translational Medicine, 2020, 12, .	12.4	117
11	Zero-order drug delivery: State of the art and future prospects. Journal of Controlled Release, 2020, 327, 834-856.	9.9	126
12	Employing drug delivery strategies to create safe and effective pharmaceuticals for <scp>COVID</scp> â€19. Bioengineering and Translational Medicine, 2020, 5, e10163.	7.1	7
13	Controlled Vaccine Delivery. , 2020, , 77-89.		Ο
14	A heat-stable microparticle platform for oral micronutrient delivery. Science Translational Medicine, 2019, 11, .	12.4	20
15	Computational modeling of retinal hypoxia and photoreceptor degeneration in patients with age-related macular degeneration. PLoS ONE, 2019, 14, e0216215.	2.5	22
16	Biocompatible near-infrared quantum dots delivered to the skin by microneedle patches record vaccination. Science Translational Medicine, 2019, 11, .	12.4	95
17	Biocompatible Semiconductor Quantum Dots as Cancer Imaging Agents. Advanced Materials, 2018, 30, e1706356.	21.0	227
18	Immunogenicity of pulsatile-release PLGA microspheres for single-injection vaccination. Vaccine, 2018, 36, 3161-3168.	3.8	41

Кеуін Ј Мснисн

#	Article	IF	CITATIONS
19	Stabilized single-injection inactivated polio vaccine elicits a strong neutralizing immune response. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E5269-E5278.	7.1	44
20	Evaporative Cooling Hydrogel Packaging for Storing Biologics Outside of the Cold Chain. Advanced Healthcare Materials, 2018, 7, e1800220.	7.6	19
21	Identification of a synergistic interaction between endothelial cells and retinal pigment epithelium. Journal of Cellular and Molecular Medicine, 2017, 21, 2542-2552.	3.6	22
22	Fabrication of fillable microparticles and other complex 3D microstructures. Science, 2017, 357, 1138-1142.	12.6	163
23	Thermostabilization of inactivated polio vaccine in PLGA-based microspheres for pulsatile release. Journal of Controlled Release, 2016, 233, 101-113.	9.9	48
24	One-step synthesis, biodegradation and biocompatibility of polyesters based on the metabolic synthon, dihydroxyacetone. Biomaterials, 2016, 98, 41-52.	11.4	14
25	Layerâ€by‣ayer Encapsulation of Probiotics for Delivery to the Microbiome. Advanced Materials, 2016, 28, 9486-9490.	21.0	239
26	Biomaterials: Layerâ€by‣ayer Encapsulation of Probiotics for Delivery to the Microbiome (Adv. Mater.) Tj ETQq(0.0 rgBT 21.0gBT	/Qverlock 10

27	Single-injection vaccines: Progress, challenges, and opportunities. Journal of Controlled Release, 2015, 219, 596-609.	9.9	80
28	Combined Surface Micropatterning and Reactive Chemistry Maximizes Tissue Adhesion with Minimal Inflammation. Advanced Healthcare Materials, 2014, 3, 565-571.	7.6	16
29	Porous Poly(ε-Caprolactone) Scaffolds for Retinal Pigment Epithelium Transplantation. , 2014, 55, 1754.		54
30	A novel porous scaffold fabrication technique for epithelial and endothelial tissue engineering. Journal of Materials Science: Materials in Medicine, 2013, 24, 1659-1670.	3.6	17
31	Pore-Cast Scaffold for Vascular Tissue Engineering. , 2013, , .		0
31 32	Pore-Cast Scaffold for Vascular Tissue Engineering. , 2013, , . Topographical control of ocular cell types for tissue engineering. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2013, 101, 1571-1584.	3.4	0
	Topographical control of ocular cell types for tissue engineering. Journal of Biomedical Materials	3.4 0.5	