Rebecca L Carrier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8618545/publications.pdf

Version: 2024-02-01

57 papers

4,212 citations

172207 29 h-index 54 g-index

58 all docs 58 docs citations

58 times ranked 5659 citing authors

#	Article	IF	Citations
1	An <i>in vitro</i> intestinal model captures immunomodulatory properties of the microbiota in inflammation. Gut Microbes, 2022, 14, 2039002.	4.3	3
2	Primary Human Colonic Mucosal Barrier Crosstalk with Super Oxygen-Sensitive Faecalibacterium prausnitzii in Continuous Culture. Med, 2021, 2, 74-98.e9.	2.2	55
3	Synergistic Action of Diclofenac with Endotoxin-Mediated Inflammation Exacerbates Intestinal Injury in Vitro. ACS Infectious Diseases, 2021, 7, 838-848.	1.8	O
4	Coculture of primary human colon monolayer with human gut bacteria. Nature Protocols, 2021, 16, 3874-3900.	5.5	28
5	Reactive oxygen species limit intestinal mucosa-bacteria homeostasis in vitro. Scientific Reports, 2021, 11, 23727.	1.6	2
6	Fully synthetic matrices for in vitro culture of primary human intestinal enteroids and endometrial organoids. Biomaterials, 2020, 254, 120125.	5.7	106
7	Materials and Microenvironments for Engineering the Intestinal Epithelium. Annals of Biomedical Engineering, 2020, 48, 1916-1940.	1.3	10
8	Impact of Developmental Age, Necrotizing Enterocolitis Associated Stress, and Oral Therapeutic Intervention on Mucus Barrier Properties. Scientific Reports, 2020, 10, 6692.	1.6	12
9	Glycosaminoglycans compositional analysis of Urodele axolotl (Ambystoma mexicanum) and Porcine Retina. Glycoconjugate Journal, 2019, 36, 165-174.	1.4	6
10	Intestinal mucus is capable of stabilizing supersaturation of poorly water-soluble drugs. Journal of Controlled Release, 2019, 296, 107-113.	4.8	12
11	Emulation of Colonic Oxygen Gradients in a Microdevice. SLAS Technology, 2018, 23, 164-171.	1.0	10
12	Interconnected Microphysiological Systems for Quantitative Biology and Pharmacology Studies. Scientific Reports, 2018, 8, 4530.	1.6	341
13	Interphotoreceptor matrix based biomaterial: Impact on human retinal progenitor cell attachment and differentiation. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 891-899.	1.6	9
14	Mucus models to evaluate the diffusion of drugs and particles. Advanced Drug Delivery Reviews, 2018, 124, 34-49.	6.6	146
15	Lipids alter microbial transport through intestinal mucus. PLoS ONE, 2018, 13, e0209151.	1.1	9
16	Acute Exposure to Commonly Ingested Emulsifiers Alters Intestinal Mucus Structure and Transport Properties. Scientific Reports, 2018, 8, 10008.	1.6	68
17	Engineering the Mucus Barrier. Annual Review of Biomedical Engineering, 2018, 20, 197-220.	5.7	92
18	Characterization of colloidal structures during intestinal lipolysis using small-angle neutron scattering. Journal of Colloid and Interface Science, 2017, 499, 189-201.	5.0	39

#	Article	IF	CITATIONS
19	Integrated gut/liver microphysiological systems elucidates inflammatory interâ€tissue crosstalk. Biotechnology and Bioengineering, 2017, 114, 2648-2659.	1.7	151
20	Complex, multi-scale small intestinal topography replicated in cellular growth substrates fabricated via chemical vapor deposition of Parylene C. Biofabrication, 2016, 8, 035011.	3.7	25
21	Lipid-associated oral delivery: Mechanisms and analysis of oral absorption enhancement. Journal of Controlled Release, 2016, 240, 544-560.	4.8	39
22	Decellularized retinal matrix: Natural platforms for human retinal progenitor cell culture. Acta Biomaterialia, 2016, 31, 61-70.	4.1	48
23	Mucus Barriers to Microparticles and Microbes are Altered in Hirschsprung's Disease. Macromolecular Bioscience, 2015, 15, 712-718.	2.1	34
24	Food-associated stimuli enhance barrier properties of gastrointestinal mucus. Biomaterials, 2015, 54, 1-8.	5.7	47
25	Size selectivity of intestinal mucus to diffusing particulates is dependent on surface chemistry and exposure to lipids. Journal of Drug Targeting, 2015, 23, 768-774.	2.1	94
26	Altered Goblet Cell Differentiation and Surface Mucus Properties in Hirschsprung Disease. PLoS ONE, 2014, 9, e99944.	1.1	50
27	Approaches to Cell Delivery: Substrates and Scaffolds for Cell Therapy. Developments in Ophthalmology, 2014, 53, 143-154.	0.1	32
28	Photoinitiated chemical vapor deposition of cytocompatible poly(2â€hydroxyethyl methacrylate) films. Journal of Biomedical Materials Research - Part A, 2014, 102, 2375-2382.	2.1	10
29	Nanomaterial induction of oxidative stress in lung epithelial cells and macrophages. Journal of Nanoparticle Research, 2014, 16 , 1 .	0.8	11
30	Three dimensional human small intestine models for ADME-Tox studies. Drug Discovery Today, 2014, 19, 1587-1594.	3.2	36
31	Interphotoreceptor matrix-poly(ϵ-caprolactone) composite scaffolds for human photoreceptor differentiation. Journal of Tissue Engineering, 2014, 5, 204173141455413.	2.3	13
32	Discovery of low mucus adhesion surfaces. Acta Biomaterialia, 2013, 9, 5201-5207.	4.1	8
33	Label-free Raman microspectral analysis for comparison of cellular uptake and distribution between nontargeted and EGFR-targeted biodegradable polymeric nanoparticles. Drug Delivery and Translational Research, 2013, 3, 575-586.	3.0	20
34	Effect of Ingested Lipids on Drug Dissolution and Release with Concurrent Digestion: A Modeling Approach. Pharmaceutical Research, 2013, 30, 3131-3144.	1.7	13
35	Spatially monitoring oxygen level in 3D microfabricated cell culture systems using optical oxygen sensing beads. Lab on A Chip, 2013, 13, 1586.	3.1	32
36	Precise, Biomimetic Replication of the Multiscale Structure of Intestinal Basement Membrane Using Chemical Vapor Deposition. Tissue Engineering - Part A, 2013, 19, 649-656.	1.6	11

#	Article	IF	Citations
37	Model predicting impact of complexation with cyclodextrins on oral absorption. Biotechnology and Bioengineering, 2013, 110, 2536-2547.	1.7	5
38	Interactions of Microbicide Nanoparticles with a Simulated Vaginal Fluid. Molecular Pharmaceutics, 2012, 9, 3347-3356.	2.3	65
39	Gastrointestinal contents in fasted state and post-lipid ingestion: In vivo measurements and in vitro models for studying oral drug delivery. Journal of Controlled Release, 2011, 151, 110-122.	4.8	74
40	Modeling the human intestinal Mucin (MUC2) C-terminal cystine knot dimer. Journal of Molecular Modeling, 2011, 17, 2953-2963.	0.8	6
41	Drug Salts and Solubilization: Modeling the Influence of Cyclodextrins on Oral Absorption. Annals of Biomedical Engineering, 2011, 39, 455-468.	1.3	12
42	Predicting the Effect of Fed-State Intestinal Contents on Drug Dissolution. Pharmaceutical Research, 2010, 27, 2646-2656.	1.7	20
43	Impact of emulsion-based drug delivery systems on intestinal permeability and drug release kinetics. Journal of Controlled Release, 2010, 142, 22-30.	4.8	161
44	Barrier Properties of Gastrointestinal Mucus to Nanoparticle Transport. Macromolecular Bioscience, 2010, 10, 1473-1483.	2.1	244
45	Synergic effects of crypt-like topography and ECM proteins on intestinal cell behavior in collagen based membranes. Biomaterials, 2010, 31, 7586-7598.	5.7	56
46	Biocompatibility of Plasma Enhanced Chemical Vapor Deposited Poly(2-hydroxyethyl methacrylate) Films for Biomimetic Replication of the Intestinal Basement Membrane. Biomacromolecules, 2010, 11, 1579-1584.	2.6	16
47	Crossâ€Linking and Degradation Properties of Plasma Enhanced Chemical Vapor Deposited Poly(2â€hydroxyethyl methacrylate). Macromolecular Rapid Communications, 2009, 30, 126-132.	2.0	30
48	Influence of micro-well biomimetic topography on intestinal epithelial Caco-2 cell phenotype. Biomaterials, 2009, 30, 6825-6834.	5.7	81
49	A model predicting delivery of saquinavir in nanoparticles to human monocyte/macrophage (Mo/Mac) cells. Biotechnology and Bioengineering, 2008, 101, 1072-1082.	1.7	24
50	Practical considerations in development of solid dosage forms that contain cyclodextrin. Journal of Pharmaceutical Sciences, 2007, 96, 1691-1707.	1.6	58
51	The utility of cyclodextrins for enhancing oral bioavailability. Journal of Controlled Release, 2007, 123, 78-99.	4.8	464
52	Increased rate of chondrocyte aggregation in a wavy-walled bioreactor. Biotechnology and Bioengineering, 2004, 88, 767-777.	1.7	40
53	Hydrolysis in Pharmaceutical Formulations. Pharmaceutical Development and Technology, 2002, 7, 113-146.	1.1	121
54	Effects of oxygen on engineered cardiac muscle. Biotechnology and Bioengineering, 2002, 78, 617-625.	1.7	130

#	Article	IF	CITATIONS
55	Perfusion Improves Tissue Architecture of Engineered Cardiac Muscle. Tissue Engineering, 2002, 8, 175-188.	4.9	308
56	Gas exchange is essential for bioreactor cultivation of tissue engineered cartilage., 1999, 63, 197-205.		202
57	Cardiac tissue engineering: Cell seeding, cultivation parameters, and tissue construct characterization., 1999, 64, 580-589.		473