Jishen Qiu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8618216/publications.pdf

Version: 2024-02-01

430754 580701 1,531 25 28 18 citations h-index g-index papers 29 29 29 1099 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Surface treatment of recycled concrete aggregates through microbial carbonate precipitation. Construction and Building Materials, 2014, 57, 144-150.	3.2	212
2	Strain hardening ultra-high performance concrete (SHUHPC) incorporating CNF-coated polyethylene fibers. Cement and Concrete Research, 2017, 98, 50-60.	4.6	147
3	High ductile behavior of a polyethylene fiber-reinforced one-part geopolymer composite: A micromechanics-based investigation. Archives of Civil and Mechanical Engineering, 2017, 17, 555-563.	1.9	137
4	Micromechanics-based investigation of a sustainable ambient temperature cured one-part strain hardening geopolymer composite. Construction and Building Materials, 2017, 131, 552-563.	3.2	137
5	Biomineralization and Successive Regeneration of Engineered Living Building Materials. Matter, 2020, 2, 481-494.	5.0	119
6	Coupled effects of crack width, slag content, and conditioning alkalinity on autogenous healing of engineered cementitious composites. Cement and Concrete Composites, 2016, 73, 203-212.	4.6	102
7	The use of microbial induced carbonate precipitation in healing cracks within reactive magnesia cement-based blends. Cement and Concrete Research, 2019, 115, 176-188.	4.6	99
8	Micromechanics-based investigation of fatigue deterioration of engineered cementitious composite (ECC). Cement and Concrete Research, 2017, 95, 65-74.	4.6	64
9	Fiber-reinforced reactive magnesia-based tensile strain-hardening composites. Cement and Concrete Composites, 2018, 89, 52-61.	4.6	63
10	Viability of bacterial spores and crack healing in bacteria-containing geopolymer. Construction and Building Materials, 2018, 169, 716-723.	3.2	62
11	Fatigue-induced deterioration of the interface between micro-polyvinyl alcohol (PVA) fiber and cement matrix. Cement and Concrete Research, 2016, 90, 127-136.	4.6	55
12	Autogenous healing of fiber-reinforced reactive magnesia-based tensile strain-hardening composites. Cement and Concrete Research, 2019, 115, 401-413.	4.6	55
13	Microscale investigation of fiber-matrix interface properties of strain-hardening geopolymer composite. Ceramics International, 2017, 43, 15616-15625.	2.3	55
14	Micromechanics constitutive modelling and optimization of strain hardening geopolymer composite. Ceramics International, 2017, 43, 5999-6007.	2.3	44
15	Fatigue-induced in-situ strength deterioration of micro-polyvinyl alcohol (PVA) fiber in cement matrix. Cement and Concrete Composites, 2017, 82, 128-136.	4.6	32
16	Engineering living building materials for enhanced bacterial viability and mechanical properties. IScience, 2021, 24, 102083.	1.9	29
17	A micromechanics-based fatigue dependent fiber-bridging constitutive model. Cement and Concrete Research, 2016, 90, 117-126.	4.6	27
18	Autogenous healing and its enhancement of interface between micro polymeric fiber and hydraulic cement matrix. Cement and Concrete Research, 2019, 124, 105830.	4.6	21

#	Article	IF	CITATIONS
19	Effect of self-healing on fatigue of engineered cementitious composites (ECCs). Cement and Concrete Composites, 2018, 94, 145-152.	4.6	18
20	Enhancing the hydrophobic PP fiber/cement matrix interface by coating nano-AlOOH to the fiber surface in a facile method. Cement and Concrete Composites, 2022, 125, 104297.	4.6	17
21	Influence of crack width on the stiffness recovery and self-healing of reactive magnesia-based binders under CO2-H2O conditioning. Construction and Building Materials, 2021, 269, 121360.	3.2	11
22	Incorporating hollow natural fiber (HNF) to enhance CO2 sequestration and mechanical properties of reactive magnesia cement (RMC)-based composites: Feasibility study. Journal of CO2 Utilization, 2022, 57, 101874.	3.3	11
23	Micromechanics-Based Design of Strain Hardening Cementitious Composites (SHCC). RILEM Bookseries, 2018, , 12-27.	0.2	5
24	Early Age Cracking in a SHCC Bridge Deck Link Slab. , 2015, , .		3
25	Effects of Microbial Carbonate Precipitation on Transport Properties of Fiber Cement Composites. Journal of Materials in Civil Engineering, 2016, 28, .	1.3	3
26	Xerogel-based building material (XBM): potential for construction on Mars base and other resourceless sites. , 2022, , .		2
27	Healing of Interface Between Polyvinyl Alcohol (PVA) Fiber and Cement Matrix. RILEM Bookseries, 2018, , 63-69.	0.2	0
28	Development of High Strength and High Ductility Cementitious Composites Incorporating CNF-Coated Polyethylene Fibers. RILEM Bookseries, 2018, , 172-180.	0.2	0