Mika Huuhtanen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8618172/publications.pdf Version: 2024-02-01

MIKA HIIIHTANEN

#	Article	IF	CITATIONS
1	Process modelling and feasibility study of sorption-enhanced methanol synthesis. Chemical Engineering and Processing: Process Intensification, 2022, 179, 109052.	1.8	1
2	Preparation of Granulated Biomass Carbon Catalysts—Structure Tailoring, Characterization, and Use in Catalytic Wet Air Oxidation of Bisphenol A. Catalysts, 2021, 11, 251.	1.6	4
3	Characterization of Pt-based oxidation catalyst – Deactivated simultaneously by sulfur and phosphorus. Journal of Catalysis, 2021, 397, 183-191.	3.1	9
4	Modelling and Cost Estimation for Conversion of Green Methanol to Renewable Liquid Transport Fuels via Olefin Oligomerisation. Processes, 2021, 9, 1046.	1.3	13
5	Characterization of mineral wool waste chemical composition, organic resin content and fiber dimensions: Aspects for valorization. Waste Management, 2021, 131, 323-330.	3.7	20
6	Vanadia–Zirconia and Vanadia–Hafnia Catalysts for Utilization of Volatile Organic Compound Emissions. Materials, 2021, 14, 5265.	1.3	1
7	Regeneration of sulfur-poisoned Pd-based catalyst for natural gas oxidation. Journal of Catalysis, 2018, 358, 253-265.	3.1	41
8	Random networks of core-shell-like Cu-Cu2O/CuO nanowires as surface plasmon resonance-enhanced sensors. Scientific Reports, 2018, 8, 4708.	1.6	20
9	The Impact of Sulphur, Phosphorus and their Co-effect on Pt/SiO2–ZrO2 Diesel Oxidation Catalysts. Topics in Catalysis, 2017, 60, 307-311.	1.3	6
10	Electron microscopic studies of natural gas oxidation catalyst – Effects of thermally accelerated aging on catalyst microstructure. Journal of Catalysis, 2017, 349, 19-29.	3.1	10
11	Deactivation of Pt/SiO2-ZrO2 diesel oxidation catalysts by sulphur, phosphorus and their combinations. Applied Catalysis B: Environmental, 2017, 218, 409-419.	10.8	20
12	Selectivity engineering of O-methylation of hydroxybenzenes with dimethyl carbonate using ionic liquid as catalyst. Reaction Chemistry and Engineering, 2016, 1, 330-339.	1.9	23
13	The Influence of Phosphorus Exposure on a Natural-Gas-Oxidation Catalyst. Topics in Catalysis, 2016, 59, 1044-1048.	1.3	4
14	Accelerated deactivation studies of the natural-gas oxidation catalyst—Verifying the role of sulfur and elevated temperature in catalyst aging. Applied Catalysis B: Environmental, 2016, 182, 439-448.	10.8	24
15	Direct synthesis of formic acid from carbon dioxide and hydrogen: A thermodynamic and experimental study using poly-urea encapsulated catalysts. Chemical Engineering Journal, 2016, 285, 625-634.	6.6	16
16	Low temperature steam reforming of ethanol over advanced carbon nanotube-based catalysts. Green Processing and Synthesis, 2015, 4, .	1.3	0
17	Particle and NOx emissions of a non-road diesel engine with an SCR unit: The effect of fuel. Renewable Energy, 2015, 77, 377-385.	4.3	30
18	Carbon supported catalysts in low temperature steam reforming of ethanol: study of catalyst performance. RSC Advances, 2015, 5, 49487-49492.	1.7	9

Μικά Ηυμητανέν

#	Article	IF	CITATIONS
19	The Effect of Phosphorus Exposure on Diesel Oxidation Catalysts—Part I: Activity Measurements, Elementary and Surface Analyses. Topics in Catalysis, 2015, 58, 961-970.	1.3	17
20	The Effect of Phosphorus Exposure on Diesel Oxidation Catalysts—Part II: Characterization of Structural Changes by Transmission Electron Microscopy. Topics in Catalysis, 2015, 58, 971-976.	1.3	12
21	Noble Metal/CNT Based Catalysts in NH3 and EtOH Assisted SCR of NO. Topics in Catalysis, 2015, 58, 984-992.	1.3	12
22	Activity Enhancement of W–CeZr Oxide Catalysts by SO2 Treatment in NH3-SCR. Topics in Catalysis, 2015, 58, 1002-1011.	1.3	11
23	Photocatalytic Degradation of Organic Pollutants in Wastewater. Topics in Catalysis, 2015, 58, 1085-1099.	1.3	83
24	Photocatalytic activity of nitrogen-doped TiO2-based nanowires: a photo-assisted Kelvin probe force microscopy study. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	11
25	Titania nanofibers in gypsum composites: an antibacterial and cytotoxicology study. Journal of Materials Chemistry B, 2014, 2, 1307.	2.9	19
26	Selective catalytic reduction of NO by hydrogen (H2-SCR) on WO -promoted Ce Zr1-O2 solids. Applied Catalysis B: Environmental, 2014, 156-157, 72-83.	10.8	49
27	DIRECT CO ₂ SEQUESTRATION ONTO ALKALINE MODIFIED OIL SHALE FLY ASH. Oil Shale, 2014, 31, 79.	0.5	1
28	Structural Characteristics of Natural-Gas-Vehicle-Aged Oxidation Catalyst. Topics in Catalysis, 2013, 56, 576-585.	1.3	27
29	The Effect of Biofuel Originated Potassium and Sodium on the NH3-SCR Activity of Fe–ZSM-5 and W–ZSM-5 Catalysts. Topics in Catalysis, 2013, 56, 602-610.	1.3	7
30	Photocatalytic Degradation of Butanol in Aqueous Solutions by TiO2 Nanofibers. Topics in Catalysis, 2013, 56, 630-636.	1.3	8
31	Deactivation of Diesel Oxidation Catalysts by Sulphur in Laboratory and Engine-Bench Scale Aging. Topics in Catalysis, 2013, 56, 672-678.	1.3	14
32	Biobutanol Production from Biomass. , 2013, , 443-470.		8
33	Hydrogen production from bio-ethanol steam reforming reaction in a Pd/PSS membrane reactor. Catalysis Today, 2012, 193, 42-48.	2.2	69
34	Nitrogen-Doped Anatase Nanofibers Decorated with Noble Metal Nanoparticles for Photocatalytic Production of Hydrogen. ACS Nano, 2011, 5, 5025-5030.	7.3	137
35	Alkaline modified oil shale fly ash: Optimal synthesis conditions and preliminary tests on CO2 adsorption. Journal of Hazardous Materials, 2011, 196, 180-186.	6.5	21
36	The Effect of Sulphur and Water Treatments on the Performance of Pd/β-Zeolite Diesel Oxidation Catalysts. Topics in Catalysis, 2011, 54, 1185-1189.	1.3	3

Μικά Ηυμητάνεν

#	Article	IF	CITATIONS
37	Enhanced photocatalytic activity of TiO2 nanofibers and their flexible composite films: Decomposition of organic dyes and efficient H2 generation from ethanol-water mixtures. Nano Research, 2011, 4, 360-369.	5.8	109
38	CNT-based catalysts for H2 production by ethanol reforming. International Journal of Hydrogen Energy, 2010, 35, 12588-12595.	3.8	43
39	The activity of Pt/Al2O3 diesel oxidation catalyst after sulphur and calcium treatments. Catalysis Today, 2010, 154, 303-307.	2.2	34
40	Ethylene Oxide Formation in a Microreactor: From Qualitative Kinetics to Detailed Modeling. Industrial & Engineering Chemistry Research, 2010, 49, 10897-10907.	1.8	30
41	Three-Dimensional Carbon Nanotube Scaffolds as Particulate Filters and Catalyst Support Membranes. ACS Nano, 2010, 4, 2003-2008.	7.3	72
42	The Effect of Sulphur on the Activity of Pd/Al2O3, Pd/CeO2 and Pd/ZrO2 Diesel Exhaust Gas Catalysts. Catalysis Letters, 2009, 127, 49-54.	1.4	37
43	The Effect of SO2 and H2O on the Activity of Pd/CeO2 and Pd/Zr–CeO2 Diesel Oxidation Catalysts. Topics in Catalysis, 2009, 52, 2025-2028.	1.3	16
44	Synthesis and activity measurement of the some bifunctional platinum loaded Beta zeolite catalysts for n-heptane hydroisomerization. Journal of Industrial and Engineering Chemistry, 2008, 14, 614-621.	2.9	25
45	SYNTHESIS AND DETERMINATION OF THE PROPERTIES OF THE BIFUNCTIONAL BETA ZEOLITE CATALYSTS FOR N-HEPTANE HYDROISOMERIZATION. Journal of the Chilean Chemical Society, 2008, 53, .	0.5	4
46	Room temperature chemical deposition of palladium nanoparticles in anodic aluminium oxide templates. Nanotechnology, 2006, 17, 1459-1463.	1.3	15
47	Pt-loaded zeolites for reducing exhaust gas emissions at low temperatures and in lean conditions. Catalysis Today, 2005, 100, 321-325.	2.2	20
48	The effect of NO2 on the activity of fresh and aged zeolite catalysts in the NH3-SCR reaction. Catalysis Today, 2005, 100, 217-222.	2.2	218
49	Integration of in Situ FTIR Studies and Catalyst Activity Measurements in Reaction Kinetic Analysis. Industrial & Engineering Chemistry Research, 2003, 42, 2756-2766.	1.8	5
50	In situ FTIR study on NO reduction by C3H6 over Pd-based catalysts. Catalysis Today, 2002, 75, 379-384.	2.2	25