David Ibarra Trejo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8618070/publications.pdf

Version: 2024-02-01

70 papers 3,985

36 h-index 62 g-index

70 all docs

70 docs citations

times ranked

70

3864 citing authors

#	Article	IF	CITATIONS
1	Lignin-Derived Compounds as Efficient Laccase Mediators for Decolorization of Different Types of Recalcitrant Dyes. Applied and Environmental Microbiology, 2005, 71, 1775-1784.	1.4	508
2	Paper pulp delignification using laccase and natural mediators. Enzyme and Microbial Technology, 2007, 40, 1264-1271.	1.6	228
3	Monolignol acylation and lignin structure in some nonwoody plants: A 2D NMR study. Phytochemistry, 2008, 69, 2831-2843.	1.4	197
4	Highly Acylated (Acetylated and/or <i>p</i> -Coumaroylated) Native Lignins from Diverse Herbaceous Plants. Journal of Agricultural and Food Chemistry, 2008, 56, 9525-9534.	2.4	172
5	Composition of non-woody plant lignins and cinnamic acids by Py-GC/MS, Py/TMAH and FT-IR. Journal of Analytical and Applied Pyrolysis, 2007, 79, 39-46.	2.6	167
6	A review of biological delignification and detoxification methods for lignocellulosic bioethanol production. Critical Reviews in Biotechnology, 2015, 35, 342-354.	5.1	151
7	Structural characterization of milled wood lignins from different eucalypt species. Holzforschung, 2008, 62, 514-526.	0.9	147
8	Lignin Modification duringEucalyptus globulusKraft Pulping Followed by Totally Chlorine-Free Bleaching:Â A Two-Dimensional Nuclear Magnetic Resonance, Fourier Transform Infrared, and Pyrolysisâ^'Gas Chromatography/Mass Spectrometry Study. Journal of Agricultural and Food Chemistry, 2007, 55, 3477-3490.	2.4	118
9	Exploring the enzymatic parameters for optimal delignification of eucalypt pulp by laccase-mediator. Enzyme and Microbial Technology, 2006, 39, 1319-1327.	1.6	104
10	Removal of Lipophilic Extractives from Paper Pulp by Laccase and Lignin-Derived Phenols as Natural Mediators. Environmental Science & Environmental Sc	4.6	91
11	Different laccase detoxification strategies for ethanol production from lignocellulosic biomass by the thermotolerant yeast Kluyveromyces marxianus CECT 10875. Bioresource Technology, 2012, 106, 101-109.	4.8	89
12	Characterization of purified bacterial cellulose focused on its use on paper restoration. Carbohydrate Polymers, 2015, 116, 173-181.	5.1	86
13	Laccases as a Potential Tool for the Efficient Conversion of Lignocellulosic Biomass: A Review. Fermentation, 2017, 3, 17.	1.4	85
14	Assessing cellulose nanofiber production from olive tree pruning residue. Carbohydrate Polymers, 2018, 179, 252-261.	5.1	80
15	Combination of alkaline and enzymatic treatments as a process for upgrading sisal paper-grade pulp to dissolving-grade pulp. Bioresource Technology, 2010, 101, 7416-7423.	4.8	79
16	Integrating laccase–mediator treatment into an industrial-type sequence for totally chlorine-free bleaching of eucalypt kraft pulp. Journal of Chemical Technology and Biotechnology, 2006, 81, 1159-1165.	1.6	73
17	Behavior of different monocomponent endoglucanases on the accessibility and reactivity of dissolving-grade pulps for viscose process. Enzyme and Microbial Technology, 2010, 47, 355-362.	1.6	72
18	Laccases as versatile enzymes: from industrial uses to novel applications. Journal of Chemical Technology and Biotechnology, 2020, 95, 481-494.	1.6	71

#	Article	IF	CITATIONS
19	Chemical characterization of residual lignins from eucalypt paper pulps. Journal of Analytical and Applied Pyrolysis, 2005, 74, 116-122.	2.6	68
20	Structural modification of eucalypt pulp lignin in a totally chlorine-free bleaching sequence including a laccase-mediator stage. Holzforschung, 2007, 61, 634-646.	0.9	62
21	Enzymatic deinking of secondary fibers: cellulases/hemicellulases versus laccase-mediator system. Journal of Industrial Microbiology and Biotechnology, 2012, 39, 1-9.	1.4	62
22	Improving the fermentation performance of <i>saccharomyces cerevisiae</i> by laccase during ethanol production from steamâ€exploded wheat straw at highâ€substrate loadings. Biotechnology Progress, 2013, 29, 74-82.	1.3	61
23	Comparing cell viability and ethanol fermentation of the thermotolerant yeast Kluyveromyces marxianus and Saccharomyces cerevisiae on steam-exploded biomass treated with laccase. Bioresource Technology, 2013, 135, 239-245.	4.8	61
24	Evaluating Lignin-Rich Residues from Biochemical Ethanol Production of Wheat Straw and Olive Tree Pruning by FTIR and 2D-NMR. International Journal of Polymer Science, 2015, 2015, 1-11.	1.2	58
25	Increasing accessibility and reactivity of paper grade pulp by enzymatic treatment for use as dissolving pulp. Nordic Pulp and Paper Research Journal, 2008, 23, 363-368.	0.3	56
26	Process Strategies for the Transition of 1G to Advanced Bioethanol Production. Processes, 2020, 8, 1310.	1.3	55
27	Main lipophilic extractives in different paper pulp types can be removed using the laccase–mediator system. Applied Microbiology and Biotechnology, 2006, 72, 845-851.	1.7	54
28	Characterization of lignins from Populus alba L. generated as by-products in different transformation processes: Kraft pulping, organosolv and acid hydrolysis. International Journal of Biological Macromolecules, 2019, 126, 18-29.	3.6	54
29	Comparison of the efficiency of bacterial and fungal laccases in delignification and detoxification of steam-pretreated lignocellulosic biomass for bioethanol production. Journal of Industrial Microbiology and Biotechnology, 2017, 44, 1561-1573.	1.4	50
30	Enzymatic Removal of Free and Conjugated Sterols Forming Pitch Deposits in Environmentally Sound Bleaching of Eucalypt Paper Pulp. Environmental Science & Eucalypt Paper Pulp. Environmental Eucalypt Paper Pulp. Environmen	4.6	47
31	Unraveling the effects of laccase treatment on enzymatic hydrolysis of steam-exploded wheat straw. Bioresource Technology, 2015, 175, 209-215.	4.8	47
32	Evaluation of lignins from side-streams generated in an olive tree pruning-based biorefinery: Bioethanol production and alkaline pulping. International Journal of Biological Macromolecules, 2017, 105, 238-251.	3.6	46
33	Screening of eucalyptus wood endophytes for laccase activity. Process Biochemistry, 2016, 51, 589-598.	1.8	44
34	In situ laccase treatment enhances the fermentability of steam-exploded wheat straw in SSCF processes at high dry matter consistencies. Bioresource Technology, 2013, 143, 337-343.	4.8	43
35	Use of new endophytic fungi as pretreatment to enhance enzymatic saccharification of Eucalyptus globulus. Bioresource Technology, 2015, 196, 383-390.	4.8	43
36	Isolation of high-purity residual lignins from eucalypt paper pulps by cellulase and proteinase treatments followed by solvent extraction. Enzyme and Microbial Technology, 2004, 35, 173-181.	1.6	38

#	Article	IF	Citations
37	A Bacterial Laccase for Enhancing Saccharification and Ethanol Fermentation of Steam-Pretreated Biomass. Fermentation, 2016, 2, 11.	1.4	36
38	Ethanol from laccase-detoxified lignocellulose by the thermotolerant yeast Kluyveromyces marxianusâ€"Effects of steam pretreatment conditions, process configurations and substrate loadings. Biochemical Engineering Journal, 2013, 79, 94-103.	1.8	34
39	Exploring enzymatic treatments for the production of dissolving grade pulp from different wood and non-wood paper grade pulps 10 th EWLP, Stockholm, Sweden, August 25–28, 2008. Holzforschung, 2009, 63, 721-730.	0.9	33
40	Optimization of treatment sequences for the production of dissolving pulp from birch kraft pulp. Nordic Pulp and Paper Research Journal, 2010, 25, 31-38.	0.3	32
41	Exploring laccase and mediators behavior during saccharification and fermentation of steamâ€exploded wheat straw for bioethanol production. Journal of Chemical Technology and Biotechnology, 2016, 91, 1816-1825.	1.6	32
42	Evaluation of lignin-enriched side-streams from different biomass conversion processes as thickeners in bio-lubricant formulations. International Journal of Biological Macromolecules, 2020, 162, 1398-1413.	3.6	30
43	Fed-batch SSCF using steam-exploded wheat straw at high dry matter consistencies and a xylose-fermenting Saccharomyces cerevisiae strain: effect of laccase supplementation. Biotechnology for Biofuels, 2013, 6, 160.	6.2	28
44	Biorefinery of Lignocellulosic Biomass from an Elm Clone: Production of Fermentable Sugars and Ligninâ€Derived Biochar for Energy and Environmental Applications. Energy Technology, 2019, 7, 277-287.	1.8	24
45	Chemical and thermal analysis of lignin streams from Robinia pseudoacacia L. generated during organosolv and acid hydrolysis pre-treatments and subsequent enzymatic hydrolysis. International Journal of Biological Macromolecules, 2019, 140, 311-322.	3.6	23
46	Production of Ethanol from Lignocellulosic Biomass. Biofuels and Biorefineries, 2017, , 375-410.	0.5	20
47	Towards the improvement of Eucalyptus globulus chemical and mechanical pulping using endophytic fungi. International Biodeterioration and Biodegradation, 2015, 105, 120-126.	1.9	18
48	Lignin-enriched Fermentation Residues from Bioethanol Production of Fast-growing Poplar and Forage Sorghum. BioResources, 2015 , 10 , .	0.5	18
49	Cellulose Nanofibers from a Dutch Elm Disease-Resistant Ulmus minor Clone. Polymers, 2020, 12, 2450.	2.0	17
50	Different Kraft lignin sources for electrospun nanostructures production: Influence of chemical structure and composition. International Journal of Biological Macromolecules, 2022, 214, 554-567.	3.6	17
51	Co-production of soluble sugars and lignin from short rotation white poplar and black locust crops. Wood Science and Technology, 2020, 54, 1617-1643.	1.4	16
52	Alternative Raw Materials for Pulp and Paper Production in the Concept of a Lignocellulosic Biorefinery. , 2019 , , .		13
53	Properties versus application requirements of solubilized lignins from an elm clone during different pre-treatments. International Journal of Biological Macromolecules, 2021, 181, 99-111.	3.6	13
54	Lignin-enriched residues from bioethanol production: Chemical characterization, isocyanate functionalization and oil structuring properties. International Journal of Biological Macromolecules, 2022, 195, 412-423.	3.6	13

#	Article	IF	Citations
55	Endophytic Fungi as Pretreatment to Enhance Enzymatic Hydrolysis of Olive Tree Pruning. BioMed Research International, 2017, 2017, 1-10.	0.9	12
56	Chemical, Thermal and Antioxidant Properties of Lignins Solubilized during Soda/AQ Pulping of Orange and Olive Tree Pruning Residues. Molecules, 2021, 26, 3819.	1.7	12
57	A sustainable methanol-based solvent exchange method to produce nanocellulose-based ecofriendly lubricants. Journal of Cleaner Production, 2021, 319, 128673.	4.6	11
58	Potential of different poplar clones for sugar production. Wood Science and Technology, 2017, 51, 669-684.	1.4	9
59	Production of Microfibrillated Cellulose from Fast-Growing Poplar and Olive Tree Pruning by Physical Pretreatment. Applied Sciences (Switzerland), 2021, 11, 6445.	1.3	9
60	Microscopy studies reveal delignification and sterol removal from eucalypt kraft pulps by laccase–HBT. Biocatalysis and Biotransformation, 2007, 25, 251-259.	1.1	8
61	Tailoring the properties of nanocellulose-sepiolite hybrid nanopapers by varying the nanocellulose type and clay content. Cellulose, 2022, 29, 5265-5287.	2.4	8
62	Chemical Modification by Impregnation of Poplar Wood with Functional Composite Modifier. BioResources, 2015, 10, .	0.5	6
63	Potential of the new endophytic fungusHormonemasp. CECT-13092 for improving processes in lignocellulosic biorefineries: biofuel production and cellulosic pulp manufacture. Journal of Chemical Technology and Biotechnology, 2017, 92, 997-1005.	1.6	6
64	Influence of Cellulose Characteristics on Pyrolysis Suitability. Processes, 2021, 9, 1584.	1.3	5
65	Potential of Lignin-Degrading Endophytic Fungi on Lignocellulosic Biorefineries. Sustainable Development and Biodiversity, 2017, , 261-281.	1.4	4
66	Populus alba L., an Autochthonous Species of Spain: A Source for Cellulose Nanofibers by Chemical Pretreatment. Polymers, 2022, 14, 68.	2.0	4
67	Obtaining Fermentable Sugars from a Highly Productive Elm Clone Using Different Pretreatments. Energies, 2021, 14, 2415.	1.6	3
68	Optimization of Treatments for the Conversion of Eucalyptus Kraft Pulp to Dissolving Pulp. Polymers From Renewable Resources, 2010, 1, 17-34.	0.8	2
69	Production of Dissolving Grade Pulps from Wood and Non-Wood Paper-Grade Pulps by Enzymatic and Chemical Pretreatments. ACS Symposium Series, 2012, , 167-189.	0.5	1
70	Emulsion Stabilization by Cationic Lignin Surfactants Derived from Bioethanol Production and Kraft Pulping Processes. Polymers, 2022, 14, 2879.	2.0	1