Tsutomu Tanabe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8617691/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genetic recombination in disgust-associated bitter taste-responsive neurons of the central nucleus of amygdala in male mice. Neuroscience Letters, 2021, 742, 135456.	1.0	3
2	Contribution of GPD2/mGPDH to an alternative respiratory chain of the mitochondrial energy metabolism and the stemness in CD133â€positive HuHâ€7 cells. Genes To Cells, 2020, 25, 139-148.	0.5	8
3	Knockdown of microglial Cav2.2 Nâ€ŧype voltageâ€dependent Ca 2+ channel ameliorates behavioral deficits in a mouse model of Parkinson's disease. FEBS Letters, 2020, 594, 2914-2922.	1.3	1
4	Involvement of N-type Ca2+ channel in microglial activation and its implications to aging-induced exaggerated cytokine response. Cell Calcium, 2019, 82, 102059.	1.1	11
5	Genetic Access to Gustatory Disgust-Associated Neurons in the Interstitial Nucleus of the Posterior Limb of the Anterior Commissure in Male Mice. Neuroscience, 2019, 413, 45-63.	1.1	10
6	Blockade of microglial Cav1.2 Ca2+ channel exacerbates the symptoms in a Parkinson's disease model. Scientific Reports, 2019, 9, 9138.	1.6	32
7	Involvement of phosphatidylinositol-3 kinase/Akt/mammalian target of rapamycin/peroxisome proliferator-activated receptor γ pathway for induction and maintenance of neuropathic pain. Biochemical and Biophysical Research Communications, 2018, 499, 253-259.	1.0	15
8	General anesthetics cause mitochondrial dysfunction and reduction of intracellular ATP levels. PLoS ONE, 2018, 13, e0190213.	1.1	37
9	Assembly of human mitochondrial ATP synthase through two separate intermediates, F ₁ â€ <i>c</i> â€#ing and <i>b</i> – <i>e</i> – <i>g</i> complex. FEBS Letters, 2015, 589, 2707-27	12. ³	30
10	Alleviation of Behavioral Hypersensitivity in Mouse Models of Inflammatory Pain with Two Structurally Different Casein Kinase 1 (CK1) Inhibitors. Molecular Pain, 2014, 10, 1744-8069-10-17.	1.0	17
11	N-type voltage-dependent Ca2+ channel in non-excitable microglial cells in mice is involved in the pathophysiology of neuropathic pain. Biochemical and Biophysical Research Communications, 2014, 450, 142-147.	1.0	26
12	Deficit of heat shock transcription factor 1â€heat shock 70 kDa protein 1A axis determines the cell death vulnerability in a model of spinocerebellar ataxia type 6. Genes To Cells, 2009, 14, 1253-1269.	0.5	17
13	Upregulation of Casein Kinase 1â^Š in Dorsal Root Ganglia and Spinal Cord after Mouse Spinal Nerve Injury Contributes to Neuropathic Pain. Molecular Pain, 2009, 5, 1744-8069-5-74.	1.0	24
14	Peripheral-Type Benzodiazepine Receptor Antagonist Is Effective in Relieving Neuropathic Pain in Mice. Journal of Pharmacological Sciences, 2009, 110, 55-63.	1.1	22
15	Properties of human Cav2.1 channel with a spinocerebellar ataxia type 6 mutation expressed in Purkinje cells. Molecular and Cellular Neurosciences, 2007, 34, 261-270.	1.0	61
16	Altered cerebellar function in mice lacking CaV2.3 Ca2+ channel. Biochemical and Biophysical Research Communications, 2006, 344, 920-925.	1.0	17
17	Progesterone receptor antagonist is effective in relieving neuropathic pain. European Journal of Pharmacology, 2006, 541, 44-48.	1.7	24
18	The carboxy-terminal tail region of human Cav2.1 (P/Q-type) channel is not an essential determinant for its subcellular localization in cultured neurones. Genes To Cells, 2005, 10, 87-96.	0.5	16

Тѕитоми Танаве

#	Article	IF	CITATIONS
19	Effects of glucocorticoid receptor antagonists on allodynia and hyperalgesia in mouse model of neuropathic pain. European Journal of Pharmacology, 2005, 524, 80-83.	1.7	69
20	Blocking the R-type (Cav2.3) Ca2+ channel enhanced morphine analgesia and reduced morphine tolerance. European Journal of Neuroscience, 2004, 20, 3516-3519.	1.2	46
21	Acetic acid conditioning stimulus induces long-lasting antinociception of somatic inflammatory pain. Pharmacology Biochemistry and Behavior, 2003, 74, 841-849.	1.3	22
22	Anesthetic Sensitivities to Propofol and Halothane in Mice Lacking the R-Type (Cav2.3) Ca2+ Channel. Anesthesia and Analgesia, 2003, 97, 96-103.	1.1	13
23	Novel Cav2.1 Splice Variants Isolated from Purkinje Cells Do Not Generate P-type Ca2+ Current. Journal of Biological Chemistry, 2002, 277, 7214-7221.	1.6	49
24	Role of Cav2.3 (α1E) Ca2+ channel in ischemic neuronal injury. NeuroReport, 2002, 13, 261-265.	0.6	23
25	Changes in Expression of Voltage-Dependent Ion Channel Subunits in Dorsal Root Ganglia of Rats with Radicular Injury and Pain. Spine, 2002, 27, 1517-1524.	1.0	58
26	Altered cocaine effects in mice lacking Cav2.3 (α1E) calcium channel. Biochemical and Biophysical Research Communications, 2002, 299, 299-304.	1.0	16
27	Cav2.3 (α1E) Ca2+channel participates in the control of sperm function. FEBS Letters, 2002, 516, 229-233.	1.3	51
28	Effects of ablation of N- and R-type Ca2+ channels on pain transmission. Neuroscience Research, 2002, 43, 1-7.	1.0	101
29	Intact LTP and Fear Memory but Impaired Spatial Memory in Mice Lacking Cav2.3 (αIE) Channel. Biochemical and Biophysical Research Communications, 2001, 282, 242-248.	1.0	51
30	Analysis of Ca2+ Currents in Spermatocytes from Mice Lacking Cav2.3 (α1E) Ca2+ Channel. Biochemical and Biophysical Research Communications, 2001, 288, 1032-1036.	1.0	25
31	Characterization of acute somatosensory pain transmission in P/Q-type Ca2+ channel mutant mice, leaner. FEBS Letters, 2001, 508, 181-186.	1.3	25
32	Properties of voltage-gated Ca2+ channels in rabbit ventricular myocytes expressing Ca2+ channel α1E cDNA. American Journal of Physiology - Cell Physiology, 2001, 280, C175-C182.	2.1	12
33	Spinocerebellar Ataxia Type 6 Mutation Alters P-type Calcium Channel Function. Journal of Biological Chemistry, 2000, 275, 10893-10898.	1.6	96
34	Nomenclature of Voltage-Gated Calcium Channels. Neuron, 2000, 25, 533-535.	3.8	868
35	Primary structure and functional expression from complementary DNA of a brain calcium channel. Nature, 1991, 350, 398-402.	13.7	858
36	Cardiac-type excitation-contraction coupling in dysgenic skeletal muscle injected with cardiac dihydropyridine receptor cDNA. Nature, 1990, 344, 451-453.	13.7	244

Τςυτομυ Ταναβε

#	Article	IF	CITATIONS
37	Regions of the skeletal muscle dihydropyridine receptor critical for excitation–contraction coupling. Nature, 1990, 346, 567-569.	13.7	589
38	Restoration of excitation—contraction coupling and slow calcium current in dysgenic muscle by dihydropyridine receptor complementary DNA. Nature, 1988, 336, 134-139.	13.7	788
39	Primary structure of the receptor for calcium channel blockers from skeletal muscle. Nature, 1987, 328, 313-318.	13.7	1,375