Huiwen Pang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8617645/publications.pdf

Version: 2024-02-01

414414 236925 1,915 32 25 32 citations h-index g-index papers 32 32 32 1390 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Highly compressible nanocellulose aerogels with a cellular structure for high-performance adsorption of Cu(II). Chemosphere, 2022, 291, 132887.	8.2	25
2	Robust Catechol Containing Cationic Waterborne Polyurethanes with Antibacterial, UV Protective, and Adhesive Properties. Macromolecular Materials and Engineering, 2022, 307, .	3.6	5
3	Conversion of soybean oil extraction wastes into high-performance wood adhesives based on mussel-inspired cation-Ï€ interactions. International Journal of Biological Macromolecules, 2022, 209, 83-92.	7.5	23
4	Highly stable cellulose nanofiber/polyacrylamide aerogel via in-situ physical/chemical double crosslinking for highly efficient Cu(II) ions removal. International Journal of Biological Macromolecules, 2022, 209, 1922-1932.	7.5	27
5	Mechanically robust, nanofibers-anchored small molecule hybrid plant protein materials with improved antibacterial activity. Industrial Crops and Products, 2022, 185, 115091.	5.2	6
6	Facile biomimetic self-coacervation of tannic acid and polycation: Tough and wide pH range of underwater adhesives. Chemical Engineering Journal, 2021, 404, 127069.	12.7	113
7	Soy meal adhesive with high strength and water resistance via carboxymethylated wood fiber-induced crosslinking. Cellulose, 2021, 28, 3569-3584.	4.9	32
8	Facile strategy of mussel-inspired polymer as a high-performance dry/wet adhesive. Journal of Cleaner Production, 2021, 308, 127309.	9.3	20
9	Novel Bionic Soy Protein-Based Adhesive with Excellent Prepressing Adhesion, Flame Retardancy, and Mildew Resistance. ACS Applied Materials & Samp; Interfaces, 2021, 13, 38732-38744.	8.0	55
10	Plant Polyphenolâ€Inspired Crosslinking Strategy toward High Bonding Strength and Mildew Resistance for Soy Protein Adhesives. Macromolecular Materials and Engineering, 2021, 306, 2100543.	3.6	35
11	Tough thermosensitive hydrogel with excellent adhesion to low-energy surface developed via nanoparticle-induced dynamic crosslinking. Applied Surface Science, 2021, 560, 149935.	6.1	13
12	Polyphenol-Metal Ion Redox-Induced Gelation System for Constructing Plant Protein Adhesives with Excellent Fluidity and Cold-Pressing Adhesion. ACS Applied Materials & Samp; Interfaces, 2021, 13, 59527-59537.	8.0	30
13	Musselâ€inspired bioâ€based waterâ€resistant soy adhesives with lowâ€cost dopamine analogueâ€modified silkworm silk Fiber. Journal of Applied Polymer Science, 2020, 137, 48785.	2.6	23
14	Eco-friendly fabrication of a cost-effective cellulose nanofiber-based aerogel for multifunctional applications in Cu(II) and organic pollutants removal. Journal of Cleaner Production, 2020, 255, 120276.	9.3	69
15	Organic-inorganic nanohybrid polyurethane elastomer based on dopamine-mediated biomimetic co-deposition thought toward multiple improved properties. Applied Surface Science, 2019, 493, 1340-1349.	6.1	23
16	3D multi-wall perforated nanocellulose-based polyethylenimine aerogels for ultrahigh efficient and reversible removal of Cu(II) ions from water. Chemical Engineering Journal, 2019, 378, 122157.	12.7	133
17	Core–Shell Nanohybrid Elastomer Based on Co-Deposition Strategy to Improve Performance of Soy Protein Adhesive. ACS Applied Materials & Interfaces, 2019, 11, 32414-32422.	8.0	90
18	Bio-inspired cellulose nanofiber-reinforced soy protein resin adhesives with dopamine-induced codeposition of "water-resistant―interphases. Applied Surface Science, 2019, 478, 441-450.	6.1	63

#	Article	IF	CITATIONS
19	Developing Eco-friendly High-Strength Soy Adhesives with Improved Ductility through Multiphase Core–Shell Hyperbranched Polysiloxane. ACS Sustainable Chemistry and Engineering, 2019, 7, 7784-7794.	6.7	79
20	Development of mainly plant protein-derived plywood bioadhesives via soy protein isolate fiber self-reinforced soybean meal composites. Industrial Crops and Products, 2019, 133, 10-17.	5. 2	67
21	Construction of bioinspired organic-inorganic hybrid composite by cellulose-induced interfacial gelation assisted with Pickering emulsion template. Chemical Engineering Journal, 2019, 359, 275-284.	12.7	65
22	Reduction of energy consumption of green plywood production by implementing high-efficiency thermal conductive bio-adhesive: Assessment from pilot-scaled application. Journal of Cleaner Production, 2019, 210, 1366-1375.	9.3	55
23	Preparation and demonstration of poly(dopamine)-triggered attapulgite-anchored polyurethane as a high-performance rod-like elastomer to reinforce soy protein-isolated composites. Applied Surface Science, 2018, 442, 537-546.	6.1	40
24	Reinforcement of interfacial and bonding strength of soybean meal-based adhesive via kenaf fiber–CaCO3 anchored N-cyclohexyl-2-benzothiazole sulfenamide. Composites Part B: Engineering, 2018, 155, 204-211.	12.0	35
25	Fully bio-based soybean adhesive in situ cross-linked by interactive network skeleton from plant oil-anchored fiber. Industrial Crops and Products, 2018, 122, 366-374.	5.2	78
26	Improvement of interfacial interactions using natural polyphenol-inspired tannic acid-coated nanoclay enhancement of soy protein isolate biofilms. Applied Surface Science, 2017, 401, 271-282.	6.1	99
27	Functionalization of halloysite nanotubes (HNTs) via mussel-inspired surface modification and silane grafting for HNTs/soy protein isolate nanocomposite film preparation. RSC Advances, 2017, 7, 24140-24148.	3.6	78
28	The synergy between natural polyphenol-inspired catechol moieties and plant protein-derived bio-adhesive enhances the wet bonding strength. Scientific Reports, 2017, 7, 9664.	3.3	73
29	Physico-chemical properties improvement of soy protein isolate films through caffeic acid incorporation and tri-functional aziridine hybridization. Food Hydrocolloids, 2016, 61, 923-932.	10.7	81
30	High-Performance and Fully Renewable Soy Protein Isolate-Based Film from Microcrystalline Cellulose via Bio-Inspired Poly(dopamine) Surface Modification. ACS Sustainable Chemistry and Engineering, 2016, 4, 4354-4360.	6.7	137
31	Soy protein isolate-based films reinforced by surface modified cellulose nanocrystal. Industrial Crops and Products, 2016, 80, 207-213.	5. 2	161
32	Properties of soybean-flour-based adhesives enhanced by attapulgite and glycerol polyglycidyl ether. Industrial Crops and Products, 2014, 59, 35-40.	5 . 2	82