List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8617268/publications.pdf Version: 2024-02-01

ANDREA I TENNED

#	Article	IF	CITATIONS
1	C1q and <scp>SRPX2</scp> regulate microglia mediated synapse elimination during early development in the visual thalamus but not the visual cortex. Glia, 2022, 70, 451-465.	4.9	18
2	Impact of COVIDâ€19 on the Onset and Progression of Alzheimer's Disease and Related Dementias: A Roadmap for Future Research. Alzheimer's and Dementia, 2022, 18, 1038-1046.	0.8	34
3	Modulation of C5a–C5aR1 signaling alters the dynamics of AD progression. Journal of Neuroinflammation, 2022, 19, .	7.2	15
4	Glia-Selective Deletion of Complement <i>C1q</i> Prevents Radiation-Induced Cognitive Deficits and Neuroinflammation. Cancer Research, 2021, 81, 1732-1744.	0.9	28
5	Therapeutic Targeting of the Complement System: From Rare Diseases to Pandemics. Pharmacological Reviews, 2021, 73, 792-827.	16.0	97
6	Generation of a humanized Aβ expressing mouse demonstrating aspects of Alzheimer's disease-like pathology. Nature Communications, 2021, 12, 2421.	12.8	53
7	Complement factor C1q mediates sleep spindle loss and epileptic spikes after mild brain injury. Science, 2021, 373, eabj2685.	12.6	55
8	The Role of Complement in Synaptic Pruning and Neurodegeneration. ImmunoTargets and Therapy, 2021, Volume 10, 373-386.	5.8	64
9	Systematic phenotyping and characterization of the 5xFAD mouse model of Alzheimer's disease. Scientific Data, 2021, 8, 270.	5.3	138
10	Complement as a powerful "influencer―in the brain during development, adulthood and neurological disorders. Advances in Immunology, 2021, 152, 157-222.	2.2	11
11	Systematic Phenotyping and Characterization of the 3xTg-AD Mouse Model of Alzheimer's Disease. Frontiers in Neuroscience, 2021, 15, 785276.	2.8	58
12	Complement-Mediated Events in Alzheimer's Disease: Mechanisms and Potential Therapeutic Targets. Journal of Immunology, 2020, 204, 306-315.	0.8	61
13	The good, the bad, and the opportunities of the complement system in neurodegenerative disease. Journal of Neuroinflammation, 2020, 17, 354.	7.2	133
14	Model organism development and evaluation for lateâ€onset Alzheimer's disease: MODELâ€AD. Alzheimer's and Dementia: Translational Research and Clinical Interventions, 2020, 6, e12110.	3.7	63
15	Translational animal models for Alzheimer's disease: An Alzheimer's Association Business Consortium Think Tank. Alzheimer's and Dementia: Translational Research and Clinical Interventions, 2020, 6, e12114.	3.7	49
16	Complement Nomenclature—Deconvoluted. Frontiers in Immunology, 2019, 10, 1308.	4.8	59
17	Peripheral complement interactions with amyloid β peptide in Alzheimer's disease: 2. Relationship to amyloid β immunotherapy. Alzheimer's and Dementia, 2018, 14, 243-252.	0.8	27
18	Peripheral complement interactions with amyloid β peptide in Alzheimer's disease: Polymorphisms, structure, and function of complement receptor 1. Alzheimer's and Dementia, 2018, 14, 1438-1449.	0.8	32

#	Article	IF	CITATIONS
19	New tricks for an ancient system: Physiological and pathological roles of complement in the CNS. Molecular Immunology, 2018, 102, 3-13.	2.2	85
20	Preface to the Special issue for the 27th International complement workshop. Molecular Immunology, 2018, 102, 1-2.	2.2	0
21	CD200 modulates macrophage cytokine secretion and phagocytosis in response to poly(lactic-co-glycolic acid) microparticles and films. Journal of Materials Chemistry B, 2017, 5, 1574-1584.	5.8	28
22	Cell-specific deletion of C1qa identifies microglia as the dominant source of C1q in mouse brain. Journal of Neuroinflammation, 2017, 14, 48.	7.2	264
23	Peripheral complement interactions with amyloid β peptide: Erythrocyte clearance mechanisms. Alzheimer's and Dementia, 2017, 13, 1397-1409.	0.8	38
24	C1q: A fresh look upon an old molecule. Molecular Immunology, 2017, 89, 73-83.	2.2	188
25	C5a Increases the Injury to Primary Neurons Elicited by Fibrillar Amyloid Beta. ASN Neuro, 2017, 9, 175909141668787.	2.7	33
26	Incorporation of a Ligand Peptide for Immune Inhibitory Receptor LAIRâ€1 on Biomaterial Surfaces Inhibits Macrophage Inflammatory Responses. Advanced Healthcare Materials, 2017, 6, 1700707.	7.6	20
27	[F5–03–02]: THE BIOLOGY OF COMPLEMENT RISK GENES IN ALZHEIMER'S DISEASE. Alzheimer's and Dementia, 2017, 13, P1448.	0.8	0
28	Prevention of C5aR1 signaling delays microglial inflammatory polarization, favors clearance pathways and suppresses cognitive loss. Molecular Neurodegeneration, 2017, 12, 66.	10.8	64
29	Analysis of the Putative Role of CR1 in Alzheimer's Disease: Genetic Association, Expression and Function. PLoS ONE, 2016, 11, e0149792.	2.5	77
30	Preface to the Special Issue for the XXVI International Complement Workshop. Immunobiology, 2016, 221, 1035-1036.	1.9	2
31	Sialylation of neurites inhibits complementâ€mediated macrophage removal in a human macrophageâ€neuron Coâ€Culture System. Glia, 2016, 64, 35-47.	4.9	26
32	A Commentary On: "NFκB-Activated Astroglial Release of Complement C3 Compromises Neuronal Morphology and Function Associated with Alzheimer's Disease― A cautionary note regarding C3aR. Frontiers in Immunology, 2015, 6, 220.	4.8	17
33	Elimination of Microglia Improves Functional Outcomes Following Extensive Neuronal Loss in the Hippocampus. Journal of Neuroscience, 2015, 35, 9977-9989.	3.6	195
34	Complement protein C1q bound to apoptotic cells suppresses human macrophage and dendritic cell-mediated Th17 and Th1 T cell subset proliferation. Journal of Leukocyte Biology, 2015, 97, 147-160.	3.3	92
35	Real-time imaging of <i>Toxoplasma</i> -infected human monocytes under fluidic shear stress reveals rapid translocation of intracellular parasites across endothelial barriers. Cellular Microbiology, 2014, 16, 580-595.	2.1	46
36	Complement modulation of T cell immune responses during homeostasis and disease. Journal of Leukocyte Biology, 2014, 96, 745-756.	3.3	74

#	Article	IF	CITATIONS
37	Complement activation fragment C5a receptors, CD88 and C5L2, are associated with neurofibrillary pathology. Journal of Neuroinflammation, 2013, 10, 25.	7.2	33
38	A Dramatic Increase of C1q Protein in the CNS during Normal Aging. Journal of Neuroscience, 2013, 33, 13460-13474.	3.6	361
39	C1q-induced LRP1B and GPR6 Proteins Expressed Early in Alzheimer Disease Mouse Models, Are Essential for the C1q-mediated Protection against Amyloid-β Neurotoxicity. Journal of Biological Chemistry, 2013, 288, 654-665.	3.4	116
40	Sialic Acid on the Neuronal Glycocalyx Prevents Complement C1 Binding and Complement Receptor-3-Mediated Removal by Microglia. Journal of Neuroscience, 2012, 32, 946-952.	3.6	112
41	Extensive innate immune gene activation accompanies brain aging, increasing vulnerability to cognitive decline and neurodegeneration: a microarray study. Journal of Neuroinflammation, 2012, 9, 179.	7.2	423
42	Complement Protein C1q Directs Macrophage Polarization and Limits Inflammasome Activity during the Uptake of Apoptotic Cells. Journal of Immunology, 2012, 188, 5682-5693.	0.8	216
43	Complement in the brain. Molecular Immunology, 2011, 48, 1592-1603.	2.2	345
44	Contribution of complement activation pathways to neuropathology differs among mouse models of Alzheimer's disease. Journal of Neuroinflammation, 2011, 8, 4.	7.2	76
45	Complement Protein C1q-Mediated Neuroprotection Is Correlated with Regulation of Neuronal Gene and MicroRNA Expression. Journal of Neuroscience, 2011, 31, 3459-3469.	3.6	129
46	A novel CD93 polymorphism in non-obese diabetic (NOD) and NZB/W F1 mice is linked to a CD4+ iNKT cell deficient state. Immunogenetics, 2010, 62, 397-407.	2.4	21
47	The Role of the Complement System and the Activation Fragment C5a in the Central Nervous System. NeuroMolecular Medicine, 2010, 12, 179-192.	3.4	136
48	Microglial C5aR (CD88) expression correlates with amyloidâ€Î² deposition in murine models of Alzheimer's disease. Journal of Neurochemistry, 2010, 113, 389-401.	3.9	76
49	Innate Immune Proteins C1q and Mannan-Binding Lectin Enhance Clearance of Atherogenic Lipoproteins by Human Monocytes and Macrophages. Journal of Immunology, 2010, 185, 3932-3939.	0.8	53
50	C1q enhances microglial clearance of apoptotic neurons and neuronal blebs, and modulates subsequent inflammatory cytokine production. Journal of Neurochemistry, 2010, 112, 733-743.	3.9	165
51	Treatment with a C5aR Antagonist Decreases Pathology and Enhances Behavioral Performance in Murine Models of Alzheimer's Disease. Journal of Immunology, 2009, 183, 1375-1383.	0.8	229
52	C1q Differentially Modulates Phagocytosis and Cytokine Responses during Ingestion of Apoptotic Cells by Human Monocytes, Macrophages, and Dendritic Cells. Journal of Immunology, 2009, 183, 6175-6185.	0.8	136
53	The role of the anaphylatoxins in health and disease. Molecular Immunology, 2009, 46, 2753-2766.	2.2	582
54	Complement component C1q inhibits βâ€amyloid―and serum amyloid Pâ€induced neurotoxicity via caspase―	2.0	00

and calpainâ€independent mechanisms. Journal of Neurochemistry, 2008, 104, 696-707.

ANDREA J TENNER

#	Article	IF	CITATIONS
55	Complement C3 and C4 expression in C1q sufficient and deficient mouse models of Alzheimer's disease. Journal of Neurochemistry, 2008, 106, 2080-2092.	3.9	111
56	Development of a humanized C1q A chain knock-in mouse: Assessment of antibody independent ß-amyloid induced complement activation. Molecular Immunology, 2008, 45, 3244-3252.	2.2	11
57	Murine Low-Density Lipoprotein Receptor-Related Protein 1 (LRP) Is Required for Phagocytosis of Targets Bearing LRP Ligands but Is Not Required for C1q-Triggered Enhancement of Phagocytosis. Journal of Immunology, 2008, 181, 364-373.	0.8	65
58	A role for complement components C1q and C3 in the clearance of apoptotic cells by microglia. FASEB Journal, 2008, 22, 554-554.	0.5	1
59	SREBPâ€∎a Regulates Cellular Defense Responses in Bone Marrowâ€Derived Macrophages. FASEB Journal, 2008, 22, 273-273.	0.5	Ο
60	Generation of Inhibitory NFκB Complexes and Phosphorylated cAMP Response Element-binding Protein Correlates with the Anti-inflammatory Activity of Complement Protein C1q in Human Monocytes. Journal of Biological Chemistry, 2007, 282, 7360-7367.	3.4	61
61	Complement proteins C1q and MBL are pattern recognition molecules that signal immediate and long-term protective immune functions. Molecular Immunology, 2007, 44, 33-43.	2.2	180
62	Complement in BuB/BnJ mice revisited: Serum C3 levels and complement opsonic activity are not elevated. Molecular Immunology, 2006, 43, 1722-1725.	2.2	19
63	ERK1/2 Activation Mediates AÎ ² Oligomer-induced Neurotoxicity via Caspase-3 Activation and Tau Cleavage in Rat Organotypic Hippocampal Slice Cultures. Journal of Biological Chemistry, 2006, 281, 20315-20325.	3.4	159
64	C1q and MBL, components of the innate immune system, influence monocyte cytokine expression. Journal of Leukocyte Biology, 2006, 80, 107-116.	3.3	126
65	The Double-Edged Flower: Roles of Complement Protein C1q in Neurodegenerative Diseases. , 2006, 586, 153-176.		32
66	Modulated interaction of the ERM protein, moesin, with CD93. Immunology, 2005, 115, 63-73.	4.4	39
67	CD93 Is Rapidly Shed from the Surface of Human Myeloid Cells and the Soluble Form Is Detected in Human Plasma. Journal of Immunology, 2005, 175, 1239-1247.	0.8	76
68	CD93 interacts with the PDZ domain-containing adaptor protein GIPC: implications in the modulation of phagocytosis. Journal of Leukocyte Biology, 2005, 77, 80-89.	3.3	40
69	Differential regulation of Abeta42-induced neuronal C1q synthesis and microglial activation. Journal of Neuroinflammation, 2005, 2, 1.	7.2	33
70	Novel Abeta peptide immunogens modulate plaque pathology and inflammation in a murine model of Alzheimer's disease. Journal of Neuroinflammation, 2005, 2, 28.	7.2	33
71	Absence of C1q Leads to Less Neuropathology in Transgenic Mouse Models of Alzheimer's Disease. Journal of Neuroscience, 2004, 24, 6457-6465.	3.6	295
72	Influence of Innate Immune Responses on Autoimmunity. Autoimmunity, 2004, 37, 83-84.	2.6	2

ANDREA J TENNER

#	Article	IF	CITATIONS
73	Complement C1q expression induced by Aβ in rat hippocampal organotypic slice cultures. Experimental Neurology, 2004, 185, 241-253.	4.1	30
74	Neuronal localization of C1q in preclinical Alzheimer's disease. Neurobiology of Disease, 2004, 15, 40-46.	4.4	67
75	Cell surface expression of C1qRP/CD93 is stabilized by O-glycosylation. Journal of Cellular Physiology, 2003, 196, 512-522.	4.1	33
76	Human Cord Blood Leukocyte Innate Immune Responses to Defense Collagens. Pediatric Research, 2003, 54, 724-731.	2.3	12
77	C1qRp defines a new human stem cell population with hematopoietic and hepatic potential. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 10441-10445.	7.1	163
78	Complement Association with Neurons and \hat{l}^2 -Amyloid Deposition in the Brains of Aged Individuals with Down Syndrome. Neurobiology of Disease, 2001, 8, 252-265.	4.4	89
79	Inflammatory Responses to Amyloidosis in a Transgenic Mouse Model of Alzheimer's Disease. American Journal of Pathology, 2001, 158, 1345-1354.	3.8	275
80	Complement in Alzheimer's disease: opportunities for modulating protective and pathogenic events. Neurobiology of Aging, 2001, 22, 849-861.	3.1	83
81	Antibody-Mediated Phagocytosis of the Amyloid β-Peptide in Microglia Is Differentially Modulated by C1q. Journal of Immunology, 2001, 166, 7496-7503.	0.8	106
82	Identification of a Site on Mannan-binding Lectin Critical for Enhancement of Phagocytosis. Journal of Biological Chemistry, 2001, 276, 43087-43094.	3.4	59
83	Structural and functional evidence for microglial expression of C1qRP, the C1q receptor that enhances phagocytosis. Journal of Leukocyte Biology, 2000, 67, 109-116.	3.3	71
84	Adiponectin, a new member of the family of soluble defense collagens, negatively regulates the growth of myelomonocytic progenitors and the functions of macrophages. Blood, 2000, 96, 1723-1732.	1.4	1,153
85	Complement Component C1q Modulates the Phagocytosis of AÎ ² by Microglia. Experimental Neurology, 2000, 161, 127-138.	4.1	115
86	Molecular Dating of Senile Plaques in the Brains of Individuals with Down Syndrome and in Aged Dogs. Experimental Neurology, 2000, 163, 111-122.	4.1	51
87	Characterization of the murine homolog of C1qRP: identical cellular expression pattern, chromosomal location and functional activity of the human and murine C1qRP. Molecular Immunology, 2000, 37, 377-389.	2.2	22
88	Adiponectin, a new member of the family of soluble defense collagens, negatively regulates the growth of myelomonocytic progenitors and the functions of macrophages. Blood, 2000, 96, 1723-1732.	1.4	63
89	Membrane receptors for soluble defense collagens. Current Opinion in Immunology, 1999, 11, 34-41.	5.5	100
90	Neuronal Protection in Stroke by an sLe ^x -Glycosylated Complement Inhibitory Protein. Science, 1999, 285, 595-599.	12.6	328

#	Article	IF	CITATIONS
91	The Presence of Isoaspartic Acid in β-Amyloid Plaques Indicates Plaque Age. Experimental Neurology, 1999, 157, 277-288.	4.1	55
92	C1q Receptors: Regulating Specific Functions of Phagocytic Cells. Immunobiology, 1998, 199, 250-264.	1.9	56
93	Glutamate Receptor GluR3 Antibodies and Death of Cortical Cells. Neuron, 1998, 20, 153-163.	8.1	126
94	Complement activation by cross-linked truncated and chimeric full-length β-amyloid. NeuroReport, 1997, 8, 3457-3462.	1.2	27
95	cDNA Cloning and Primary Structure Analysis of C1qRP, the Human C1q/MBL/SPA Receptor That Mediates Enhanced Phagocytosis In Vitro. Immunity, 1997, 6, 119-129.	14.3	239
96	Aspartate residue 7 in amyloid β-protein is critical for classical complement pathway activation: Implications for Alzheimer's disease pathogenesis. Nature Medicine, 1997, 3, 077-079.	30.7	134
97	Localization and Cell Association of C1q in Alzheimer's Disease Brain. Experimental Neurology, 1996, 138, 22-32.	4.1	211
98	C1q triggers neutrophil superoxide production by a unique CD18-dependent mechanism. Journal of Leukocyte Biology, 1995, 58, 168-176.	3.3	37
99	Localization of the Site on the Complement Component C1q Required for the Stimulation of Neutrophil Superoxide Production. Journal of Biological Chemistry, 1995, 270, 30627-30634.	3.4	29
100	Mannose binding protein (MBP) enhances mononuclear phagocyte function via a receptor that contains the 126,000 Mr component of the Clq receptor. Immunity, 1995, 3, 485-493.	14.3	155
101	Cultured Rat Microglia Express C1q and Receptor for C1q: Implications for Amyloid Effects on Microglia. Experimental Neurology, 1995, 134, 214-221.	4.1	51
102	Decreased levels of C1q in cerebrospinal fluid of living Alzheimer patients correlate with disease state. Neurobiology of Aging, 1994, 15, 609-614.	3.1	51
103	Clq acts synergistically with phorbol dibutyrate to activate CR1-mediated phagocytosis by human mononuclear phagocytes. European Journal of Immunology, 1988, 18, 2001-2007.	2.9	63