
## Yimao Wan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8616895/publications.pdf Version: 2024-02-01



ΥΙΜΑΟ ΜΛΑΝ

| #  | Article                                                                                                                                                                                                       | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Realization and simulation of interdigitated back contact silicon solar cells with dopant-free asymmetric hetero-contacts. Solar Energy, 2022, 231, 203-208.                                                  | 2.9  | 3         |
| 2  | Phosphorus-doped polycrystalline silicon passivating contacts via spin-on doping. Solar Energy<br>Materials and Solar Cells, 2021, 221, 110902.                                                               | 3.0  | 8         |
| 3  | Application of Phosphorusâ€Doped Polysiliconâ€Based Fullâ€Area Passivating Contact on the Front<br>Textured Surface of p â€Type Silicon. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2000455.   | 1.2  | 1         |
| 4  | Boron Spin-On Doping for Poly-Si/SiO <sub><i>x</i></sub> Passivating Contacts. ACS Applied Energy<br>Materials, 2021, 4, 4993-4999.                                                                           | 2.5  | 9         |
| 5  | Polysilicon passivated junctions: The next technology for silicon solar cells?. Joule, 2021, 5, 811-828.                                                                                                      | 11.7 | 88        |
| 6  | Passivated Emitter and Rear Cell Silicon Solar Cells with a Front Polysilicon Passivating Contacted<br>Selective Emitter. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2100057.                  | 1.2  | 4         |
| 7  | Correction to "Boron Spin-On Doping for Poly-Si/SiOx Passivating Contacts― ACS Applied Energy<br>Materials, 2021, 4, 6376-6376.                                                                               | 2.5  | 0         |
| 8  | Ga-doped Czochralski silicon with rear p-type polysilicon passivating contact for high-efficiency<br>p-type solar cells. Solar Energy Materials and Solar Cells, 2021, 230, 111229.                           | 3.0  | 6         |
| 9  | N-type polysilicon passivating contacts using ultra-thin PECVD silicon oxynitrides as the interfacial<br>layer. Solar Energy Materials and Solar Cells, 2021, 232, 111356.                                    | 3.0  | 4         |
| 10 | Influence of PECVD deposition temperature on phosphorus doped poly-silicon passivating contacts.<br>Solar Energy Materials and Solar Cells, 2020, 206, 110348.                                                | 3.0  | 24        |
| 11 | 21.3%-efficient n-type silicon solar cell with a full area rear TiOx/LiF/Al electron-selective contact.<br>Solar Energy Materials and Solar Cells, 2020, 206, 110291.                                         | 3.0  | 38        |
| 12 | Solar Water Splitting: Over 17% Efficiency Standâ€Alone Solar Water Splitting Enabled by<br>Perovskite‧ilicon Tandem Absorbers (Adv. Energy Mater. 28/2020). Advanced Energy Materials, 2020, 10,<br>2070122. | 10.2 | 4         |
| 13 | Titanium Nitride Electron-Conductive Contact for Silicon Solar Cells By Radio Frequency Sputtering<br>from a TiN Target. ACS Applied Materials & Interfaces, 2020, 12, 26177-26183.                           | 4.0  | 27        |
| 14 | Over 17% Efficiency Standâ€Alone Solar Water Splitting Enabled by Perovskite‧ilicon Tandem Absorbers.<br>Advanced Energy Materials, 2020, 10, 2000772.                                                        | 10.2 | 58        |
| 15 | Influence of PECVD Deposition Power and Pressure on Phosphorus-Doped Polysilicon Passivating<br>Contacts. IEEE Journal of Photovoltaics, 2020, 10, 1239-1245.                                                 | 1.5  | 6         |
| 16 | Exceptional silicon surface passivation by an ONO dielectric stack. Solar Energy Materials and Solar<br>Cells, 2019, 189, 245-253.                                                                            | 3.0  | 9         |
| 17 | InGaAsP as a Promising Narrow Band Gap Semiconductor for Photoelectrochemical Water Splitting.<br>ACS Applied Materials & Interfaces, 2019, 11, 25236-25242.                                                  | 4.0  | 21        |
| 18 | Dual-Function Electron-Conductive, Hole-Blocking Titanium Nitride Contacts for Efficient Silicon<br>Solar Cells. Joule, 2019, 3, 1314-1327.                                                                   | 11.7 | 91        |

Yimao Wan

| #  | Article                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Activating and optimizing evaporation-processed magnesium oxide passivating contact for silicon solar cells. Nano Energy, 2019, 62, 181-188.                                                                                      | 8.2  | 35        |
| 20 | 15% Efficiency Ultrathin Silicon Solar Cells with Fluorine-Doped Titanium Oxide and Chemically<br>Tailored Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate) as Asymmetric Heterocontact. ACS<br>Nano, 2019, 13, 6356-6362. | 7.3  | 53        |
| 21 | Ultrathin Ta <sub>2</sub> O <sub>5</sub> electron-selective contacts for high efficiency InP solar cells. Nanoscale, 2019, 11, 7497-7505.                                                                                         | 2.8  | 38        |
| 22 | Numerical exploration for structure design and free-energy loss analysis of the high-efficiency polysilicon passivated-contact p-type silicon solar cell. Solar Energy, 2019, 178, 249-256.                                       | 2.9  | 18        |
| 23 | High efficiency n-type silicon solar cells with passivating contacts based on PECVD silicon films doped by phosphorus diffusion. Solar Energy Materials and Solar Cells, 2019, 193, 80-84.                                        | 3.0  | 72        |
| 24 | Dopantâ€Free Partial Rear Contacts Enabling 23% Silicon Solar Cells. Advanced Energy Materials, 2019, 9,<br>1803367.                                                                                                              | 10.2 | 77        |
| 25 | Gettering Effects of Silicon Nitride Films From Various Plasma-Enhanced Chemical Vapor Deposition<br>Conditions. IEEE Journal of Photovoltaics, 2019, 9, 78-81.                                                                   | 1.5  | 9         |
| 26 | Tantalum Nitride Electronâ€Selective Contact for Crystalline Silicon Solar Cells. Advanced Energy<br>Materials, 2018, 8, 1800608.                                                                                                 | 10.2 | 112       |
| 27 | Laserâ€Patterned nâ€Type Frontâ€Junction Silicon Solar Cell With Tantalum Oxide/Silicon Nitride<br>Passivation and Antireflection. Solar Rrl, 2018, 2, 1700187.                                                                   | 3.1  | 3         |
| 28 | Stable Dopant-Free Asymmetric Heterocontact Silicon Solar Cells with Efficiencies above 20%. ACS Energy Letters, 2018, 3, 508-513.                                                                                                | 8.8  | 164       |
| 29 | Carrier population control and surface passivation in solar cells. Solar Energy Materials and Solar<br>Cells, 2018, 184, 38-47.                                                                                                   | 3.0  | 109       |
| 30 | Tantalum Oxide Electron-Selective Heterocontacts for Silicon Photovoltaics and Photoelectrochemical Water Reduction. ACS Energy Letters, 2018, 3, 125-131.                                                                        | 8.8  | 127       |
| 31 | In situ recombination junction between p-Si and TiO <sub>2</sub> enables high-efficiency monolithic perovskite/Si tandem cells. Science Advances, 2018, 4, eaau9711.                                                              | 4.7  | 122       |
| 32 | Tantalum Nitride Hole-Blocking Layer for Efficient Silicon Solar Cells. , 2018, , .                                                                                                                                               |      | 0         |
| 33 | 23% efficient n-type crystalline silicon solar cells with passivated partial rear contacts. , 2018, , .                                                                                                                           |      | 1         |
| 34 | A Universal Doubleâ€Side Passivation for High Openâ€Circuit Voltage in Perovskite Solar Cells: Role of<br>Carbonyl Groups in Poly(methyl methacrylate). Advanced Energy Materials, 2018, 8, 1801208.                              | 10.2 | 387       |
| 35 | Temperature and Humidity Stable Alkali/Alkalineâ€Earth Metal Carbonates as Electron Heterocontacts<br>for Silicon Photovoltaics. Advanced Energy Materials, 2018, 8, 1800743.                                                     | 10.2 | 35        |
| 36 | Zirconium oxide surface passivation of crystalline silicon. Applied Physics Letters, 2018, 112, .                                                                                                                                 | 1.5  | 19        |

Yimao Wan

| #  | Article                                                                                                                                                                                                 | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Over 16.7% Efficiency Organicâ€Silicon Heterojunction Solar Cells with Solutionâ€Processed Dopantâ€Free<br>Contacts for Both Polarities. Advanced Functional Materials, 2018, 28, 1802192.              | 7.8  | 58        |
| 38 | 23% efficient p-type crystalline silicon solar cells with hole-selective passivating contacts based on physical vapor deposition of doped silicon films. Applied Physics Letters, 2018, 113, .          | 1.5  | 84        |
| 39 | Investigation of the thermal stability of MoOx as hole-selective contacts for Si solar cells. Journal of Applied Physics, 2018, 124, 073106.                                                            | 1.1  | 35        |
| 40 | A Low Resistance Calcium/Reduced Titania Passivated Contact for High Efficiency Crystalline Silicon<br>Solar Cells. Advanced Energy Materials, 2017, 7, 1602606.                                        | 10.2 | 97        |
| 41 | Highly effective electronic passivation of silicon surfaces by atomic layer deposited hafnium oxide.<br>Applied Physics Letters, 2017, 110, .                                                           | 1.5  | 58        |
| 42 | Solution-processed molybdenum oxide for hole-selective contacts on crystalline silicon solar cells.<br>Applied Surface Science, 2017, 423, 139-146.                                                     | 3.1  | 43        |
| 43 | Monolithic perovskite/silicon-homojunction tandem solar cell with over 22% efficiency. Energy and Environmental Science, 2017, 10, 2472-2479.                                                           | 15.6 | 178       |
| 44 | Microchannel contacting of crystalline silicon solar cells. Scientific Reports, 2017, 7, 9085.                                                                                                          | 1.6  | 8         |
| 45 | Interface passivation using ultrathin polymer–fullerene films for high-efficiency perovskite solar<br>cells with negligible hysteresis. Energy and Environmental Science, 2017, 10, 1792-1800.          | 15.6 | 381       |
| 46 | Efficient Indiumâ€Doped TiO <i><sub>x</sub></i> Electron Transport Layers for Highâ€Performance<br>Perovskite Solar Cells and Perovskiteâ€Silicon Tandems. Advanced Energy Materials, 2017, 7, 1601768. | 10.2 | 167       |
| 47 | Calcium contacts to nâ€ŧype crystalline silicon solar cells. Progress in Photovoltaics: Research and Applications, 2017, 25, 636-644.                                                                   | 4.4  | 60        |
| 48 | Conductive and Stable Magnesium Oxide Electron‧elective Contacts for Efficient Silicon Solar Cells.<br>Advanced Energy Materials, 2017, 7, 1601863.                                                     | 10.2 | 174       |
| 49 | Efficient electron contacts for \$n\$-type silicon solar cells using Magnesium metal, oxide, and fluoride. , 2017, , .                                                                                  |      | 0         |
| 50 | Silicon Surface Passivation by Gallium Oxide Capped With Silicon Nitride. IEEE Journal of Photovoltaics, 2016, 6, 900-905.                                                                              | 1.5  | 18        |
| 51 | Low resistance Ohmic contact to p-type crystalline silicon via nitrogen-doped copper oxide films.<br>Applied Physics Letters, 2016, 109, .                                                              | 1.5  | 21        |
| 52 | Survey of dopant-free carrier-selective contacts for silicon solar cells. , 2016, , .                                                                                                                   |      | 12        |
| 53 | A magnesium/amorphous silicon passivating contact for <i>n</i> -type crystalline silicon solar cells.<br>Applied Physics Letters, 2016, 109, .                                                          | 1.5  | 44        |
| 54 | Magnesium fluoride based electron-selective contact. , 2016, , .                                                                                                                                        |      | 0         |

Υίμαο Wan

| #  | Article                                                                                                                                                                                          | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Passivating contacts for silicon solar cells based on boron-diffused recrystallized amorphous silicon and thin dielectric interlayers. Solar Energy Materials and Solar Cells, 2016, 152, 73-79. | 3.0  | 81        |
| 56 | Titanium oxide: A re-emerging optical and passivating material for silicon solar cells. Solar Energy<br>Materials and Solar Cells, 2016, 158, 115-121.                                           | 3.0  | 67        |
| 57 | Magnesium Fluoride Electron-Selective Contacts for Crystalline Silicon Solar Cells. ACS Applied Materials & amp; Interfaces, 2016, 8, 14671-14677.                                               | 4.0  | 188       |
| 58 | Lithium Fluoride Based Electron Contacts for High Efficiency nâ€Type Crystalline Silicon Solar Cells.<br>Advanced Energy Materials, 2016, 6, 1600241.                                            | 10.2 | 134       |
| 59 | Design, fabrication and characterisation of a 24.4% efficient interdigitated back contact solar cell.<br>Progress in Photovoltaics: Research and Applications, 2016, 24, 411-427.                | 4.4  | 146       |
| 60 | Graded silicon nitride films: Optics and passivation. Journal of Vacuum Science and Technology A:<br>Vacuum, Surfaces and Films, 2015, 33, 060610.                                               | 0.9  | 1         |
| 61 | Interpolating the optical properties of varied composition silicon nitride. Physica Status Solidi (B):<br>Basic Research, 2015, 252, 2230-2235.                                                  | 0.7  | 5         |
| 62 | Silicon nitride/silicon oxide interlayers for solar cell passivating contacts based on PECVD amorphous silicon. Physica Status Solidi - Rapid Research Letters, 2015, 9, 617-621.                | 1.2  | 15        |
| 63 | Skin care for healthy silicon solar cells. , 2015, , .                                                                                                                                           |      | 57        |
| 64 | Phosphorus-diffused polysilicon contacts for solar cells. Solar Energy Materials and Solar Cells, 2015, 142, 75-82.                                                                              | 3.0  | 147       |
| 65 | Passivation of c-Si surfaces by ALD tantalum oxide capped with PECVD silicon nitride. Solar Energy<br>Materials and Solar Cells, 2015, 142, 42-46.                                               | 3.0  | 34        |
| 66 | Tantalum oxide/silicon nitride: A negatively charged surface passivation stack for silicon solar cells.<br>Applied Physics Letters, 2015, 106, .                                                 | 1.5  | 26        |
| 67 | Towards industrial advanced front-junction n-type silicon solar cells. , 2014, , .                                                                                                               |      | 4         |
| 68 | Development of a self-aligned etch-back process for selectively doped silicon solar cells. , 2014, , .                                                                                           |      | 4         |
| 69 | Influence of the NH <inf>3</inf> :SiH <inf>4</inf> ratio and surface morphology on<br>the surface passivation of phosphorus-diffused C-Si by PECVD SiN <inf>x</inf> . , 2014, , .                |      | 1         |
| 70 | Surface passivation of crystalline silicon by sputter deposited hydrogenated amorphous silicon.<br>Physica Status Solidi - Rapid Research Letters, 2014, 8, 231-234.                             | 1.2  | 16        |
| 71 | Low Surface Recombination Velocity by Low-Absorption Silicon Nitride on c-Si. IEEE Journal of Photovoltaics, 2013, 3, 554-559.                                                                   | 1.5  | 52        |
| 72 | Evaluating Plasmonic Light Trapping With Photoluminescence. IEEE Journal of Photovoltaics, 2013, 3,<br>1292-1297.                                                                                | 1.5  | 20        |

YIMAO WAN

| #  | Article                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Characterisation and optimisation of PECVD SiNx as an antireflection coating and passivation layer for silicon solar cells. AIP Advances, 2013, 3, . | 0.6 | 104       |
| 74 | The influence of crystal orientation on surface passivation in multi-crystalline silicon. , 2013, , .                                                |     | 3         |
| 75 | Characterization of stress in amorphous silicon nitride and implications to c-Si surface passivation. , 2012, , .                                    |     | 4         |