Martina G Vijver

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8616864/martina-g-vijver-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

159 5,073 37 64 g-index

164 6,221 7 6.2 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
159	Effects of natural organic matter on the joint toxicity and accumulation of Cu nanoparticles and ZnO nanoparticles in Daphnia magna. <i>Environmental Pollution</i> , 2022 , 292, 118413	9.3	1
158	An Overview of Methodologies for Tracing and Quantifying Microplastics in Environmental Samples 2022 , 21-46		0
157	Similarity assessment of metallic nanoparticles within a risk assessment framework: A case study on metallic nanoparticles and lettuce <i>NanoImpact</i> , 2022 , 26, 100397	5.6	O
156	Safe-and-Sustainable-by-Design Framework Based on a Prospective Life Cycle Assessment: Lessons Learned from a Nano-Titanium Dioxide Case Study <i>International Journal of Environmental Research and Public Health</i> , 2022 , 19,	4.6	3
155	Development of a Quasi-QSAR Model for Prediction of the Immobilization Response of Daphnia magna Exposed to Metal-Based Nanomaterials <i>Environmental Toxicology and Chemistry</i> , 2022 ,	3.8	4
154	Microbiota-dependent TLR2 signaling reduces silver nanoparticle toxicity to zebrafish larvae <i>Ecotoxicology and Environmental Safety</i> , 2022 , 237, 113522	7	О
153	Trophic Transfer and Toxicity of (Mixtures of) Ag and TiO Nanoparticles in the Lettuce-Terrestrial Snail Food Chain. <i>Environmental Science & Environmental Science & Environm</i>	10.3	2
152	Experimental evidence for neonicotinoid driven decline in aquatic emerging insects. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	6
151	The Differences between the Effects of a Nanoformulation and a Conventional Form of Atrazine to Lettuce: Physiological Responses, Defense Mechanisms, and Nutrient Displacement. <i>Journal of Agricultural and Food Chemistry</i> , 2021 , 69, 12527-12540	5.7	1
150	Adsorption of titanium dioxide nanoparticles onto zebrafish eggs affects colonizing microbiota. <i>Aquatic Toxicology</i> , 2021 , 232, 105744	5.1	3
149	Parental and trophic transfer of nanoscale plastic debris in an assembled aquatic food chain as a function of particle size. <i>Environmental Pollution</i> , 2021 , 269, 116066	9.3	6
148	Application of low dosage of copper oxide and zinc oxide nanoparticles boosts bacterial and fungal communities in soil. <i>Science of the Total Environment</i> , 2021 , 757, 143807	10.2	6
147	Prediction of the Joint Toxicity of Multiple Engineered Nanoparticles: The Integration of Classic Mixture Models and Methods. <i>Chemical Research in Toxicology</i> , 2021 , 34, 176-178	4	2
146	Method for extraction of nanoscale plastic debris from soil. <i>Analytical Methods</i> , 2021 , 13, 1576-1583	3.2	3
145	Particle number-based trophic transfer of gold nanomaterials in an aquatic food chain. <i>Nature Communications</i> , 2021 , 12, 899	17.4	9
144	Probing nano-QSAR to assess the interactions between carbon nanoparticles and a SARS-CoV-2 RNA fragment. <i>Ecotoxicology and Environmental Safety</i> , 2021 , 219, 112357	7	4
143	Effects of humic substances on the aqueous stability of cerium dioxide nanoparticles and their toxicity to aquatic organisms. <i>Science of the Total Environment</i> , 2021 , 781, 146583	10.2	2

(2020-2021)

142	The Relative Contributions of Complexation, Dispersing, and Adsorption of Tannic Acid to the Dissolution of Copper Oxide Nanoparticles. <i>Water, Air, and Soil Pollution</i> , 2021 , 232, 1	2.6		
141	Graphene nanoplatelets and reduced graphene oxide elevate the microalgal cytotoxicity of nano-zirconium oxide. <i>Chemosphere</i> , 2021 , 276, 130015	8.4	5	
140	The analytical quest for sub-micron plastics in biological matrices. <i>Nano Today</i> , 2021 , 41, 101296	17.9	3	
139	Engineered nanoselenium supplemented fish diet: toxicity comparison with ionic selenium and stability against particle dissolution, aggregation and release. <i>Environmental Science: Nano</i> , 2020 , 7, 232	2 <i>5</i> -233	6 ²	
138	Foliar versus root exposure of AgNPs to lettuce: Phytotoxicity, antioxidant responses and internal translocation. <i>Environmental Pollution</i> , 2020 , 261, 114117	9.3	34	
137	Colonizing microbiota protect zebrafish larvae against silver nanoparticle toxicity. <i>Nanotoxicology</i> , 2020 , 14, 725-739	5.3	8	
136	Remediation of heavy metal contaminated soil by biodegradable chelator-induced washing: Efficiencies and mechanisms. <i>Environmental Research</i> , 2020 , 186, 109554	7.9	32	
135	The fate and toxicity of Pb-based perovskite nanoparticles on soil bacterial community: Impacts of pH, humic acid, and divalent cations. <i>Chemosphere</i> , 2020 , 249, 126564	8.4	12	
134	Plastic particles adsorb to the roots of freshwater vascular plant Spirodela polyrhiza but do not impair growth. <i>Limnology and Oceanography Letters</i> , 2020 , 5, 37-45	7.9	36	
133	Are Technological Developments Improving the Environmental Sustainability of Photovoltaic Electricity?. <i>Energy Technology</i> , 2020 , 8, 1901064	3.5	8	
132	The promoted dissolution of copper oxide nanoparticles by dissolved humic acid: Copper complexation over particle dispersion. <i>Chemosphere</i> , 2020 , 245, 125612	8.4	9	
131	Do the joint effects of size, shape and ecocorona influence the attachment and physical eco(cyto)toxicity of nanoparticles to algae?. <i>Nanotoxicology</i> , 2020 , 14, 310-325	5.3	11	
130	An across-species comparison of the sensitivity of different organisms to Pb-based perovskites used in solar cells. <i>Science of the Total Environment</i> , 2020 , 708, 135134	10.2	9	
129	Metal sorption onto nanoscale plastic debris and trojan horse effects in Daphnia magna: Role of dissolved organic matter. <i>Water Research</i> , 2020 , 186, 116410	12.5	17	
128	Environmental impacts of IIIIV/silicon photovoltaics: life cycle assessment and guidance for sustainable manufacturing. <i>Energy and Environmental Science</i> , 2020 , 13, 4280-4290	35.4	5	
127	Ex ante life cycle assessment of GaAs/Si nanowireBased tandem solar cells: a benchmark for industrialization. <i>International Journal of Life Cycle Assessment</i> , 2020 , 25, 1767-1782	4.6	3	
126	Quantifying the relative contribution of particulate versus dissolved silver to toxicity and uptake kinetics of silver nanowires in lettuce: impact of size and coating. <i>Nanotoxicology</i> , 2020 , 14, 1399-1414	5.3	8	
125	Interaction between a nano-formulation of atrazine and rhizosphere bacterial communities: atrazine degradation and bacterial community alterations. <i>Environmental Science: Nano</i> , 2020 , 7, 3372-3	378 ¹ 4	4	

124	Life cycle assessment of emerging technologies at the lab scale: The case of nanowire-based solar cells. <i>Journal of Industrial Ecology</i> , 2020 , 24, 193-204	7.2	17
123	Variability in fish bioconcentration factors: Influences of study design and consequences for regulation. <i>Chemosphere</i> , 2020 , 239, 124731	8.4	10
122	Spatial and temporal homogenisation of freshwater macrofaunal communities in ditches. <i>Freshwater Biology</i> , 2019 , 64, 2260-2268	3.1	3
121	Compositional alterations in soil bacterial communities exposed to TiO nanoparticles are not reflected in functional impacts. <i>Environmental Research</i> , 2019 , 178, 108713	7.9	12
120	Development of methods for extraction and analytical characterization of carbon-based nanomaterials (nanoplastics and carbon nanotubes) in biological and environmental matrices by asymmetrical flow field-flow fractionation. <i>Environmental Pollution</i> , 2019 , 255, 113304	9.3	24
119	Systematic selection of a dose metric for metal-based nanoparticles. <i>NanoImpact</i> , 2019 , 13, 70-75	5.6	4
118	Significant decline of Daphnia magna population biomass due to microplastic exposure. <i>Environmental Pollution</i> , 2019 , 250, 669-675	9.3	36
117	The choreography of chemicals in nature; beyond ecotoxicological limits. <i>Chemosphere</i> , 2019 , 227, 366-	38°.Q	1
116	Reproductive toxicity of primary and secondary microplastics to three cladocerans during chronic exposure. <i>Environmental Pollution</i> , 2019 , 249, 638-646	9.3	71
115	Health Risks of Polybrominated Diphenyl Ethers (PBDEs) and Metals at Informal Electronic Waste Recycling Sites. <i>International Journal of Environmental Research and Public Health</i> , 2019 , 16,	4.6	16
114	Microplastics accumulate on pores in seed capsule and delay germination and root growth of the terrestrial vascular plant Lepidium sativum. <i>Chemosphere</i> , 2019 , 226, 774-781	8.4	185
113	Dissolution and aggregation kinetics of zero valent copper nanoparticles in (simulated) natural surface waters: Simultaneous effects of pH, NOM and ionic strength. <i>Chemosphere</i> , 2019 , 226, 841-850	8.4	24
112	Hydrophobic Organic Pollutants in Soils and Dusts at Electronic Waste Recycling Sites: Occurrence and Possible Impacts of Polybrominated Diphenyl Ethers. <i>International Journal of Environmental Research and Public Health</i> , 2019 , 16,	4.6	8
111	Environmental levels of neonicotinoids reduce prey consumption, mobility and emergence of the damselfly Ischnura elegans. <i>Journal of Applied Ecology</i> , 2019 , 56, 2034-2044	5.8	9
110	Neonicotinoids and fertilizers jointly structure naturally assembled freshwater macroinvertebrate communities. <i>Science of the Total Environment</i> , 2019 , 691, 36-44	10.2	6
109	Interaction of zero valent copper nanoparticles with algal cells under simulated natural conditions: Particle dissolution kinetics, uptake and heteroaggregation. <i>Science of the Total Environment</i> , 2019 , 689, 133-140	10.2	9
108	Polystyrene nanoplastics disrupt glucose metabolism and cortisol levels with a possible link to behavioural changes in larval zebrafish. <i>Communications Biology</i> , 2019 , 2, 382	6.7	66
107	Compositional and predicted functional dynamics of soil bacterial community in response to single pulse and repeated dosing of titanium dioxide nanoparticles. <i>NanoImpact</i> , 2019 , 16, 100187	5.6	4

(2018-2019)

106	Partitioning the impact of environmental drivers and species interactions in dynamic aquatic communities. <i>Ecosphere</i> , 2019 , 10, e02910	3.1	3
105	A Dose Metrics Perspective on the Association of Gold Nanomaterials with Algal Cells. <i>Environmental Science and Technology Letters</i> , 2019 , 6, 732-738	11	7
104	Analytical approaches for characterizing and quantifying engineered nanoparticles in biological matrices from an (eco)toxicological perspective: old challenges, new methods and techniques. <i>Science of the Total Environment</i> , 2019 , 660, 1283-1293	10.2	35
103	Method for Extraction and Quantification of Metal-Based Nanoparticles in Biological Media: Number-Based Biodistribution and Bioconcentration. <i>Environmental Science & Environmental Science & Environ</i>	10.3	23
102	Nanoparticles induce dermal and intestinal innate immune system responses in zebrafish embryos. <i>Environmental Science: Nano</i> , 2018 , 5, 904-916	7.1	54
101	Towards Nanowire Tandem Junction Solar Cells on Silicon. <i>IEEE Journal of Photovoltaics</i> , 2018 , 8, 733-74	19 .7	37
100	Thiacloprid-induced toxicity influenced by nutrients: Evidence from in situ bioassays in experimental ditches. <i>Environmental Toxicology and Chemistry</i> , 2018 , 37, 1907-1915	3.8	11
99	Impact of water chemistry on the behavior and fate of copper nanoparticles. <i>Environmental Pollution</i> , 2018 , 234, 684-691	9.3	28
98	Effect of soil washing with biodegradable chelators on the toxicity of residual metals and soil biological properties. <i>Science of the Total Environment</i> , 2018 , 625, 1021-1029	10.2	64
97	Acute sensitivity of three Cladoceran species to different types of microplastics in combination with thermal stress. <i>Environmental Pollution</i> , 2018 , 239, 733-740	9.3	45
96	Impact of informal electronic waste recycling on metal concentrations in soils and dusts. <i>Environmental Research</i> , 2018 , 164, 385-394	7.9	21
95	Assessing combined impacts of agrochemicals: Aquatic macroinvertebrate population responses in outdoor mesocosms. <i>Science of the Total Environment</i> , 2018 , 631-632, 341-347	10.2	13
94	Prevalence and injury patterns among electronic waste workers in the informal sector in Nigeria. <i>Injury Prevention</i> , 2018 , 24, 185-192	3.2	26
93	Developing species sensitivity distributions for metallic nanomaterials considering the characteristics of nanomaterials, experimental conditions, and different types of endpoints. <i>Food and Chemical Toxicology</i> , 2018 , 112, 563-570	4.7	23
92	Impact of water chemistry on the particle-specific toxicity of copper nanoparticles to Daphnia magna. <i>Science of the Total Environment</i> , 2018 , 610-611, 1329-1335	10.2	26
91	Green and Clean: Reviewing the Justification of Claims for Nanomaterials from a Sustainability Point of View. <i>Sustainability</i> , 2018 , 10, 689	3.6	20
90	Emerging investigator series: the dynamics of particle size distributions need to be accounted for in bioavailability modelling of nanoparticles. <i>Environmental Science: Nano</i> , 2018 , 5, 2473-2481	7.1	14
89	Microbially-mediated indirect effects of silver nanoparticles on aquatic invertebrates. <i>Aquatic Sciences</i> , 2018 , 80, 1	2.5	10

88	Feasibility of Chinese cabbage (Brassica bara) and lettuce (Lactuca sativa) cultivation in heavily metalsflontaminated soil after washing with biodegradable chelators. <i>Journal of Cleaner Production</i> , 2018 , 197, 479-490	10.3	32
87	Multiscale Coupling Strategy for Nano Ecotoxicology Prediction. <i>Environmental Science & Environmental Science & Technology</i> , 2018 , 52, 7598-7600	10.3	6
86	Refinement and cross-validation of nickel bioavailability in PNEC-Pro, a regulatory tool for site-specific risk assessment of metals in surface water. <i>Environmental Toxicology and Chemistry</i> , 2017 , 36, 2367-2376	3.8	5
85	Determining global distribution of microplastics by combining citizen science and in-depth case studies. <i>Integrated Environmental Assessment and Management</i> , 2017 , 13, 536-541	2.5	22
84	Postregistration monitoring of pesticides is urgently required to protect ecosystems. <i>Environmental Toxicology and Chemistry</i> , 2017 , 36, 860-865	3.8	28
83	Toxicity models of metal mixtures established on the basis of <code>EdditivityLand</code> Interactions <code>I</code> Frontiers of Environmental Science and Engineering, 2017, 11, 1	5.8	3
82	A comparison of fate and toxicity of selenite, biogenically, and chemically synthesized selenium nanoparticles to zebrafish (Danio rerio) embryogenesis. <i>Nanotoxicology</i> , 2017 , 11, 87-97	5.3	45
81	Tannic acid promotes ion release of copper oxide nanoparticles: Impacts from solution pH change and complexation reactions. <i>Water Research</i> , 2017 , 127, 59-67	12.5	17
80	A large-scale investigation of microplastic contamination: Abundance and characteristics of microplastics in European beach sediment. <i>Marine Pollution Bulletin</i> , 2017 , 123, 219-226	6.7	198
79	Setting the stage for debating the roles of risk assessment and life-cycle assessment of engineered nanomaterials. <i>Nature Nanotechnology</i> , 2017 , 12, 727-733	28.7	61
78	Importance of exposure dynamics of metal-based nano-ZnO, -Cu and -Pb governing the metabolic potential of soil bacterial communities. <i>Ecotoxicology and Environmental Safety</i> , 2017 , 145, 349-358	7	27
77	Brood pouch-mediated polystyrene nanoparticle uptake during Daphnia magna embryogenesis. <i>Nanotoxicology</i> , 2017 , 11, 1059-1069	5.3	42
76	Pathway analysis of systemic transcriptome responses to injected polystyrene particles in zebrafish larvae. <i>Aquatic Toxicology</i> , 2017 , 190, 112-120	5.1	88
75	Exploring uptake and biodistribution of polystyrene (nano)particles in zebrafish embryos at different developmental stages. <i>Aquatic Toxicology</i> , 2017 , 190, 40-45	5.1	110
74	A standardized method for sampling and extraction methods for quantifying microplastics in beach sand. <i>Marine Pollution Bulletin</i> , 2017 , 114, 77-83	6.7	156
73	A Review of Recent Advances towards the Development of (Quantitative) Structure-Activity Relationships for Metallic Nanomaterials. <i>Materials</i> , 2017 , 10,	3.5	16
72	Health Risks Awareness of Electronic Waste Workers in the Informal Sector in Nigeria. <i>International Journal of Environmental Research and Public Health</i> , 2017 , 14,	4.6	31
71	A Novel Experimental and Modelling Strategy for Nanoparticle Toxicity Testing Enabling the Use of Small Quantities. <i>International Journal of Environmental Research and Public Health</i> , 2017 , 14,	4.6	11

(2015-2017)

70	Current Knowledge on the Use of Computational Toxicology in Hazard Assessment of Metallic Engineered Nanomaterials. <i>International Journal of Molecular Sciences</i> , 2017 , 18,	6.3	16
69	Pressure-Induced Shifts in Trophic Linkages in a Simplified Aquatic Food Web. <i>Frontiers in Environmental Science</i> , 2017 , 5,	4.8	11
68	Agricultural constraints on microbial resource use and niche breadth in drainage ditches. <i>PeerJ</i> , 2017 , 5, e4175	3.1	7
67	Dose metrics assessment for differently shaped and sized metal-based nanoparticles. <i>Environmental Toxicology and Chemistry</i> , 2016 , 35, 2466-2473	3.8	9
66	TiO2 nanoparticles reduce the effects of ZnO nanoparticles and Zn ions on zebrafish embryos (Danio rerio). <i>NanoImpact</i> , 2016 , 2, 45-53	5.6	18
65	Silver Nanoparticles, Ions, and Shape Governing Soil Microbial Functional Diversity: Nano Shapes Micro. <i>Frontiers in Microbiology</i> , 2016 , 7, 1123	5.7	43
64	Comparison and evaluation of pesticide monitoring programs using a process-based mixture model. <i>Environmental Toxicology and Chemistry</i> , 2016 , 35, 3113-3123	3.8	7
63	Effects of agricultural practices on organic matter degradation in ditches. <i>Scientific Reports</i> , 2016 , 6, 21474	4.9	18
62	Development of nanostructure activity relationships assisting the nanomaterial hazard categorization for risk assessment and regulatory decision-making. <i>RSC Advances</i> , 2016 , 6, 52227-52235	5 ^{3.7}	24
61	Evaluating the Combined Toxicity of Cu and ZnO Nanoparticles: Utility of the Concept of Additivity and a Nested Experimental Design. <i>Environmental Science & Experimental Science & Ex</i>	10.3	32
60	Toxicity of copper nanoparticles to Daphnia magna under different exposure conditions. <i>Science of the Total Environment</i> , 2016 , 563-564, 81-8	10.2	35
59	Pesticide mixtures in streams of several European countries and the USA. <i>Science of the Total Environment</i> , 2016 , 573, 680-689	10.2	100
58	Consideration of the bioavailability of metal/metalloid species in freshwaters: experiences regarding the implementation of biotic ligand model-based approaches in risk assessment frameworks. <i>Environmental Science and Pollution Research</i> , 2015 , 22, 7405-21	5.1	46
57	Resource niche overlap promotes stability of bacterial community metabolism in experimental microcosms. <i>Frontiers in Microbiology</i> , 2015 , 6, 105	5.7	26
56	Statistically significant deviations from additivity: What do they mean in assessing toxicity of mixtures?. <i>Ecotoxicology and Environmental Safety</i> , 2015 , 122, 37-44	7	15
55	A comparative analysis on the in vivo toxicity of copper nanoparticles in three species of freshwater fish. <i>Chemosphere</i> , 2015 , 139, 181-9	8.4	61
54	Toxicity and accumulation of Cu and ZnO nanoparticles in Daphnia magna. <i>Environmental Science & Environmental & Envir</i>	10.3	122
53	Comparative toxicity of copper nanoparticles across three Lemnaceae species. <i>Science of the Total Environment</i> , 2015 , 518-519, 217-24	10.2	35

52	Assessing toxicity of copper nanoparticles across five cladoceran species. <i>Environmental Toxicology and Chemistry</i> , 2015 , 34, 1863-9	3.8	23
51	Incorporating bioavailability into toxicity assessment of Cu-Ni, Cu-Cd, and Ni-Cd mixtures with the extended biotic ligand model and the WHAM-F(tox) approach. <i>Environmental Science and Pollution Research</i> , 2015 , 22, 19213-23	5.1	18
50	Summary and analysis of the currently existing literature data on metal-based nanoparticles published for selected aquatic organisms: Applicability for toxicity prediction by (Q)SARs. <i>ATLA Alternatives To Laboratory Animals</i> , 2015 , 43, 221-40	2.1	24
49	Experimental determinations of soil copper toxicity to lettuce (Lactuca sativa) growth in highly different copper spiked and aged soils. <i>Environmental Science and Pollution Research</i> , 2015 , 22, 5283-92	5.1	5
48	Impacts of major cations (K(+), Na (+), Ca (2+), Mg (2+)) and protons on toxicity predictions of nickel and cadmium to lettuce (Lactuca sativa L.) using exposure models. <i>Ecotoxicology</i> , 2014 , 23, 385-95	2.9	20
47	Modeling cadmium and nickel toxicity to earthworms with the free ion approach. <i>Environmental Toxicology and Chemistry</i> , 2014 , 33, 438-46	3.8	4
46	Toxicity of different-sized copper nano- and submicron particles and their shed copper ions to zebrafish embryos. <i>Environmental Toxicology and Chemistry</i> , 2014 , 33, 1774-82	3.8	60
45	Particle-specific toxic effects of differently shaped zinc oxide nanoparticles to zebrafish embryos (Danio rerio). <i>Environmental Toxicology and Chemistry</i> , 2014 , 33, 2859-68	3.8	76
44	Impact of imidacloprid on Daphnia magna under different food quality regimes. <i>Environmental Toxicology and Chemistry</i> , 2014 , 33, 621-31	3.8	25
43	Comparing three approaches in extending biotic ligand models to predict the toxicity of binary metal mixtures (Cu-Ni, Cu-Zn and Cu-Ag) to lettuce (Lactuca sativa L.). <i>Chemosphere</i> , 2014 , 112, 282-8	8.4	20
42	Species-specific toxicity of copper nanoparticles among mammalian and piscine cell lines. <i>Nanotoxicology</i> , 2014 , 8, 383-93	5.3	73
41	Macro-invertebrate decline in surface water polluted with imidacloprid: a rebuttal and some new analyses. <i>PLoS ONE</i> , 2014 , 9, e89837	3.7	47
40	Investigating short-term exposure to electromagnetic fields on reproductive capacity of invertebrates in the field situation. <i>Electromagnetic Biology and Medicine</i> , 2014 , 33, 21-8	2.2	13
39	Delineating ion-ion interactions by electrostatic modeling for predicting rhizotoxicity of metal mixtures to lettuce Lactuca sativa. <i>Environmental Toxicology and Chemistry</i> , 2014 , 33, 1988-95	3.8	8
38	Can commonly measurable traits explain differences in metal accumulation and toxicity in earthworm species?. <i>Ecotoxicology</i> , 2014 , 23, 21-32	2.9	16
37	Modeling toxicity of binary metal mixtures ($Cu(2+)$ - $Ag(+)$, $Cu(2+)$ - $Zn(2+)$) to lettuce, Lactuca sativa, with the biotic ligand model. <i>Environmental Toxicology and Chemistry</i> , 2013 , 32, 137-43	3.8	35
36	Modelling metal-metal interactions and metal toxicity to lettuce Lactuca sativa following mixture exposure (Cu[]+-Zn[]+ and Cu[]+-Ag+). <i>Environmental Pollution</i> , 2013 , 176, 185-92	9.3	25
35	Predicting copper toxicity to different earthworm species using a multicomponent Freundlich model. <i>Environmental Science & amp; Technology</i> , 2013 , 47, 4796-803	10.3	29

(2008-2012)

34	Predicting effects of cations on copper toxicity to lettuce (Lactuca sativa) by the biotic ligand model. <i>Environmental Toxicology and Chemistry</i> , 2012 , 31, 355-9	3.8	42
33	Multimetal accumulation in crustaceans in surface water related to body size and water chemistry. <i>Environmental Toxicology and Chemistry</i> , 2012 , 31, 2269-80	3.8	8
32	Simplification of biotic ligand models of Cu, Ni, and Zn by 1-, 2-, and 3-parameter transfer functions. <i>Integrated Environmental Assessment and Management</i> , 2012 , 8, 738-48	2.5	13
31	Spatial and temporal variation of watertype-specific no-effect concentrations and risks of Cu, Ni, and Zn. <i>Environmental Science & Description (Cu)</i> and Zn. <i>Environmental Science & Description (Cu)</i> and Zn. <i>Environmental Science (Cu)</i> and <i>Cu)</i> are the concentrations and risks of Cu, Ni, and Zn. <i>Environmental Science (Cu)</i> are the concentrations and risks of Cu, Ni, and Zn. <i>Environmental Science (Cu)</i> and <i>Cu)</i> are the concentrations and risks of Cu, Ni, and Zn. <i>Environmental Science (Cu)</i> and <i>Cu)</i> are the concentrations and risks of Cu, Ni, and Zn. <i>Environmental Science (Cu)</i> and <i>Cu)</i> are the concentrations and risks of Cu, Ni, and Zn. <i>Environmental Science (Cu)</i> are the concentrations and risks of Cu, Ni, and Zn. <i>Environmental Science (Cu)</i> are the concentration of Cu and Cu).	10.3	32
30	Response predictions for organisms water-exposed to metal mixtures: a meta-analysis. <i>Environmental Toxicology and Chemistry</i> , 2011 , 30, 1482-7	3.8	89
29	Interactions of cadmium and zinc impact their toxicity to the earthworm Aporrectodea caliginosa. <i>Environmental Toxicology and Chemistry</i> , 2011 , 30, 2084-93	3.8	31
28	Smart nanotoxicity testing for biodiversity conservation. <i>Environmental Science & Environmental Scien</i>	10.3	2
27	Metals and Metalloids in Terrestrial Systems: Bioaccumulation,Biomagnification and Subsequent Adverse Effects 2011 , 43-62		7
26	Bioavalibility in Soils 2011 , 721-746		7
25	Toxicological mixture models are based on inadequate assumptions. <i>Environmental Science & Environmental Science & Technology</i> , 2010 , 44, 4841-2	10.3	44
24	Uptake kinetics of metals by the earthworm Eisenia fetida exposed to field-contaminated soils. <i>Environmental Pollution</i> , 2009 , 157, 2622-8	9.3	58
23	Earthworms and Their Use in Eco(toxico)logical Modeling. <i>Emerging Topics in Ecotoxicology</i> , 2009 , 177-20	04	9
22	Ecological effects of diffuse mixed pollution are site-specific and require higher-tier risk assessment to improve site management decisions: a discussion paper. <i>Science of the Total Environment</i> , 2008 , 406, 503-17	10.2	37
21	Determining metal origins and availability in fluvial deposits by analysis of geochemical baselines and solid-solution partitioning measurements and modelling. <i>Environmental Pollution</i> , 2008 , 156, 832-9	9.3	37
20	Spatial and temporal analysis of pesticides concentrations in surface water: pesticides atlas. <i>Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes</i> , 2008 , 43, 665-74	2.2	21
19	How subcellular partitioning can help to understand heavy metal accumulation and elimination kinetics in snails. <i>Environmental Toxicology and Chemistry</i> , 2008 , 27, 1284	3.8	52
18	Uncertainty of water type-specific hazardous copper concentrations derived with biotic ligand models. <i>Environmental Toxicology and Chemistry</i> , 2008 , 27, 2311-9	3.8	11
17	How subcellular partitioning can help to understand heavy metal accumulation and elimination kinetics in snails. <i>Environmental Toxicology and Chemistry</i> , 2008 , 27, 1284-92	3.8	11

16	Impact of pH on Cu accumulation kinetics in earthworm cytosol. <i>Environmental Science & Environmental </i>	10.3	20
15	Metal-specific interactions at the interface of chemistry and biology. <i>Pure and Applied Chemistry</i> , 2007 , 79, 2351-2366	2.1	19
14	Monitoring metals in terrestrial environments within a bioavailability framework and a focus on soil extraction. <i>Ecotoxicology and Environmental Safety</i> , 2007 , 67, 163-79	7	242
13	Metal accumulation in the earthworm Lumbricus rubellus. Model predictions compared to field data. <i>Environmental Pollution</i> , 2007 , 146, 428-36	9.3	39
12	Metal accumulation in earthworms inhabiting floodplain soils. <i>Environmental Pollution</i> , 2007 , 148, 132-4	10 9.3	15
11	Kinetics of Zn and Cd accumulation in the isopod Porcellio scaber exposed to contaminated soil and/or food. <i>Soil Biology and Biochemistry</i> , 2006 , 38, 1554-1563	7.5	38
10	Copper in the terrestrial environment: Verification of a laboratory-derived terrestrial biotic ligand model to predict earthworm mortality with toxicity observed in field soils. <i>Soil Biology and Biochemistry</i> , 2006 , 38, 1788-1796	7.5	27
9	Biological significance of metals partitioned to subcellular fractions within earthworms (Aporrectodea caliginosa). <i>Environmental Toxicology and Chemistry</i> , 2006 , 25, 807-14	3.8	85
8	Biphasic elimination and uptake kinetics of Zn and Cd in the earthworm Lumbricus rubellus exposed to contaminated floodplain soil. <i>Soil Biology and Biochemistry</i> , 2005 , 37, 1843-1851	7.5	45
7	Surface adsorption of metals onto the earthworm Lumbricus rubellus and the isopod Porcellio scaber is negligible compared to absorption in the body. <i>Science of the Total Environment</i> , 2005 , 340, 271-80	10.2	46
6	Internal metal sequestration and its ecotoxicological relevance: a review. <i>Environmental Science & Environmental Science</i>	10.3	346
5	Oral sealing using glue: a new method to distinguish between intestinal and dermal uptake of metals in earthworms. <i>Soil Biology and Biochemistry</i> , 2003 , 35, 125-132	7.5	235
4	Metal uptake from soils and soil-sediment mixtures by larvae of Tenebrio molitor (L.) (Coleoptera). <i>Ecotoxicology and Environmental Safety</i> , 2003 , 54, 277-89	7	68
3	Impact of metal pools and soil properties on metal accumulation in Folsomia candida (Collembola). <i>Environmental Toxicology and Chemistry</i> , 2001 , 20, 712-720	3.8	42
2	Impact of metal pools and soil properties on metal accumulation in Folsomia candida (Collembola). <i>Environmental Toxicology and Chemistry</i> , 2001 , 20, 712-20	3.8	28
1	Emerging investigator series: Perspectives on toxicokinetics of nanoscale plastic debris in organisms. <i>Environmental Science: Nano</i> ,	7.1	O