
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/86167/publications.pdf Version: 2024-02-01

FENC 74AO

#	Article	IF	CITATIONS
1	Cellular Uptake, Intracellular Trafficking, and Cytotoxicity of Nanomaterials. Small, 2011, 7, 1322-1337.	5.2	975
2	The direct electron transfer of glucose oxidase and glucose biosensor based on carbon nanotubes/chitosan matrix. Biosensors and Bioelectronics, 2005, 21, 984-988.	5.3	532
3	Chemistry and physics of a single atomic layer: strategies and challenges for functionalization of graphene and graphene-based materials. Chemical Society Reviews, 2012, 41, 97-114.	18.7	487
4	Challenges and Constraints of Using Oxygen Cathodes in Microbial Fuel Cells. Environmental Science & Technology, 2006, 40, 5193-5199.	4.6	479
5	Application of pyrolysed iron(II) phthalocyanine and CoTMPP based oxygen reduction catalysts as cathode materials in microbial fuel cells. Electrochemistry Communications, 2005, 7, 1405-1410.	2.3	466
6	Extracellular polymeric substances are transient media for microbial extracellular electron transfer. Science Advances, 2017, 3, e1700623.	4.7	439
7	Techniques for the study and development of microbial fuel cells: an electrochemical perspective. Chemical Society Reviews, 2009, 38, 1926.	18.7	395
8	Electrochemical and Bioelectrochemistry Properties of Room-Temperature Ionic Liquids and Carbon Composite Materials. Analytical Chemistry, 2004, 76, 4960-4967.	3.2	289
9	Multihydroxylated [Gd@C82(OH)22]nNanoparticles:Â Antineoplastic Activity of High Efficiency and Low Toxicity. Nano Letters, 2005, 5, 2050-2057.	4.5	281
10	Elastic carbon foam via direct carbonization of polymer foam for flexible electrodes and organic chemical absorption. Energy and Environmental Science, 2013, 6, 2435.	15.6	275
11	Low-toxic and safe nanomaterials by surface-chemical design, carbon nanotubes, fullerenes, metallofullerenes, and graphenes. Nanoscale, 2011, 3, 362-382.	2.8	264
12	Ultrahigh reactivity provokes nanotoxicity: Explanation of oral toxicity of nano-copper particles. Toxicology Letters, 2007, 175, 102-110.	0.4	243
13	Activated Carbon Cloth as Anode for Sulfate Removal in a Microbial Fuel Cell. Environmental Science & Technology, 2008, 42, 4971-4976.	4.6	236
14	Chemistry of carbon nanotubes in biomedical applications. Journal of Materials Chemistry, 2010, 20, 1036-1052.	6.7	235
15	Grapheneâ€Based Smart Platforms for Combined Cancer Therapy. Advanced Materials, 2019, 31, e1800662.	11.1	233
16	The effect of bioelectrochemical systems on antibiotics removal and antibiotic resistance genes: A review. Chemical Engineering Journal, 2019, 358, 1421-1437.	6.6	230
17	Three-dimensional graphene/Pt nanoparticle composites as freestanding anode for enhancing performance of microbial fuel cells. Science Advances, 2015, 1, e1500372.	4.7	209
18	Gd-metallofullerenol nanomaterial as non-toxic breast cancer stem cell-specific inhibitor. Nature Communications, 2015, 6, 5988.	5.8	164

#	Article	IF	CITATIONS
19	Rapid degradation of sulphamethoxazole and the further transformation of 3-amino-5-methylisoxazole in a microbial fuel cell. Water Research, 2016, 88, 322-328.	5.3	162
20	Electrochemistry and Electrogenerated Chemiluminescence of SiO2Nanoparticles/Tris(2,2â€ ⁻ bipyridyl)ruthenium(ΙΙ) Multilayer Films on Indium Tin Oxide Electrodes. Analytical Chemistry, 2004, 76, 184-191.	3.2	155
21	Interfacing Electrocatalysis and Biocatalysis with Tungsten Carbide: A High-Performance, Noble-Metal-Free Microbial Fuel Cell. Angewandte Chemie - International Edition, 2006, 45, 6658-6661.	7.2	155
22	Potent Angiogenesis Inhibition by the Particulate Form of Fullerene Derivatives. ACS Nano, 2010, 4, 2773-2783.	7.3	148
23	Bio-distribution and metabolic paths of silica coated CdSeS quantum dots. Toxicology and Applied Pharmacology, 2008, 230, 364-371.	1.3	145
24	Electrochemical roles of extracellular polymeric substances in biofilms. Current Opinion in Electrochemistry, 2017, 4, 206-211.	2.5	134
25	A novel sediment microbial fuel cell with a biocathode in the rice rhizosphere. Bioresource Technology, 2012, 108, 55-59.	4.8	128
26	Age-Related Differences in Pulmonary and Cardiovascular Responses to SiO ₂ Nanoparticle Inhalation: Nanotoxicity Has Susceptible Population. Environmental Science & Technology, 2008, 42, 8985-8992.	4.6	124
27	Evaluation of catalytic properties of tungsten carbide for the anode of microbial fuel cells. Applied Catalysis B: Environmental, 2007, 74, 261-269.	10.8	121
28	A Role for Microbial Palladium Nanoparticles in Extracellular Electron Transfer. Angewandte Chemie - International Edition, 2011, 50, 427-430.	7.2	121
29	Acceleration of peroxymonosulfate decomposition by a magnetic MoS2/CuFe2O4 heterogeneous catalyst for rapid degradation of fluoxetine. Chemical Engineering Journal, 2020, 397, 125501.	6.6	119
30	Conductive Carbon Nanotube Hydrogel as a Bioanode for Enhanced Microbial Electrocatalysis. ACS Applied Materials & Interfaces, 2014, 6, 8158-8164.	4.0	118
31	The changes of bacterial communities and antibiotic resistance genes in microbial fuel cells during long-term oxytetracycline processing. Water Research, 2018, 142, 105-114.	5.3	117
32	Factors affecting the performance of microbial fuel cells for sulfur pollutants removal. Biosensors and Bioelectronics, 2009, 24, 1931-1936.	5.3	114
33	Redox-Active Oxygen-Containing Functional Groups in Activated Carbon Facilitate Microbial Reduction of Ferrihydrite. Environmental Science & Technology, 2017, 51, 9709-9717.	4.6	113
34	Progress of air-breathing cathode in microbial fuel cells. Journal of Power Sources, 2017, 356, 245-255.	4.0	110
35	A Safeâ€byâ€Design Strategy towards Safer Nanomaterials in Nanomedicines. Advanced Materials, 2019, 31, e1805391.	11.1	109
36	Abiotic Oxygen Reduction Reaction Catalysts Used in Microbial Fuel Cells. ChemElectroChem, 2014, 1, 1813-1821.	1.7	108

#	Article	IF	CITATIONS
37	Cellulose-derived nitrogen and phosphorus dual-doped carbon as high performance oxygen reduction catalyst in microbial fuel cell. Journal of Power Sources, 2015, 273, 1189-1193.	4.0	106
38	The translocation of fullerenic nanoparticles into lysosome via the pathway of clathrin-mediated endocytosis. Nanotechnology, 2008, 19, 145102.	1.3	103
39	Light intensity affects the performance of photo microbial fuel cells with Desmodesmus sp. A8 as cathodic microorganism. Applied Energy, 2014, 116, 86-90.	5.1	102
40	Binder-free carbon black/stainless steel mesh composite electrode for high-performance anode in microbial fuel cells. Journal of Power Sources, 2015, 284, 252-257.	4.0	102
41	Gadolinium metallofullerenol nanoparticles inhibit cancer metastasis through matrix metalloproteinase inhibition: imprisoning instead of poisoning cancer cells. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8, 136-146.	1.7	101
42	Detection of Trace Hg2+ via Induced Circular Dichroism of DNA Wrapped Around Single-Walled Carbon Nanotubes. Journal of the American Chemical Society, 2008, 130, 9190-9191.	6.6	99
43	Carbon dots-fed Shewanella oneidensis MR-1 for bioelectricity enhancement. Nature Communications, 2020, 11, 1379.	5.8	97
44	Nanosurface chemistry and dose govern the bioaccumulation and toxicity of carbon nanotubes, metal nanomaterials and quantum dots in vivo. Science Bulletin, 2015, 60, 3-20.	4.3	96
45	Toxicity of inorganic nanomaterials in biomedical imaging. Biotechnology Advances, 2014, 32, 727-743.	6.0	94
46	Light-excited photoelectrons coupled with bio-photocatalysis enhanced the degradation efficiency of oxytetracycline. Water Research, 2018, 143, 589-598.	5.3	93
47	Factors Affecting the Performance of Single-Chamber Soil Microbial Fuel Cells for Power Generation. Pedosphere, 2014, 24, 330-338.	2.1	92
48	Energy from Plants and Microorganisms: Progress in Plant–Microbial Fuel Cells. ChemSusChem, 2012, 5, 1006-1011.	3.6	90
49	Microbial synthesis of highly dispersed PdAu alloy for enhanced electrocatalysis. Science Advances, 2016, 2, e1600858.	4.7	85
50	Analysis of oxygen reduction and microbial community of air-diffusion biocathode in microbial fuel cells. Bioresource Technology, 2013, 144, 74-79.	4.8	84
51	Bacterial Community Structure of Autotrophic Denitrification Biocathode by 454 Pyrosequencing of the 16S rRNA Gene. Microbial Ecology, 2015, 69, 492-499.	1.4	83
52	Dynamic changes in the microbial community composition in microbial fuel cells fed with sucrose. Applied Microbiology and Biotechnology, 2012, 93, 423-437.	1.7	79
53	Efficient degradation of sulfamethoxazole and the response of microbial communities in microbial fuel cells. RSC Advances, 2015, 5, 56430-56437.	1.7	79
54	Direct electrochemistry of microperoxidase 11 using carbon nanotube modified electrodes. Journal of Electroanalytical Chemistry, 2005, 578, 121-127.	1.9	74

#	Article	IF	CITATIONS
55	Extracellular Electron Transfer Mediated by Flavins in Gram-positive Bacillus sp. WS-XY1 and Yeast Pichia stipitis. Electrochimica Acta, 2014, 146, 564-567.	2.6	74
56	Direct electron transfer and electrocatalysis of microperoxidase immobilized on nanohybrid film. Journal of Electroanalytical Chemistry, 2005, 581, 1-10.	1.9	73
57	A Low-Cost Biofuel Cell with pH-Dependent Power Output Based on Porous Carbon as Matrix. Chemistry - A European Journal, 2005, 11, 4970-4974.	1.7	73
58	Biodegradation of sulfadiazine in microbial fuel cells: Reaction mechanism, biotoxicity removal and the correlation with reactor microbes. Journal of Hazardous Materials, 2018, 360, 402-411.	6.5	73
59	How Mechanical Forces Shape Plant Organs. Current Biology, 2021, 31, R143-R159.	1.8	73
60	Effect of pH on sulfate removal from wastewater using a bioelectrochemical system. Chemical Engineering Journal, 2013, 218, 147-153.	6.6	71
61	Direct electrochemistry of microperoxidase at Pt microelectrodes modified with carbon nanotubes. Biosensors and Bioelectronics, 2005, 21, 159-166.	5.3	70
62	Direct electron transfer of glucose oxidase immobilized in an ionic liquid reconstituted cellulose–carbon nanotube matrix. Bioelectrochemistry, 2009, 77, 64-68.	2.4	70
63	Proteomic analysis of the reduction and resistance mechanisms of Shewanella oneidensis MR-1 under long-term hexavalent chromium stress. Environment International, 2019, 127, 94-102.	4.8	69
64	Microtubule-Mediated Wall Anisotropy Contributes to Leaf Blade Flattening. Current Biology, 2020, 30, 3972-3985.e6.	1.8	69
65	Characterization of Exoelectrogenic Bacteria Enterobacter Strains Isolated from a Microbial Fuel Cell Exposed to Copper Shock Load. PLoS ONE, 2014, 9, e113379.	1.1	68
66	Enhanced bioleaching efficiency of metals from E-wastes driven by biochar. Journal of Hazardous Materials, 2016, 320, 393-400.	6.5	66
67	Poly(vinylidene fluoride-hexafluoropropylene)/organo-montmorillonite clays nanocomposite lithium polymer electrolytes. Electrochimica Acta, 2004, 49, 3595-3602.	2.6	64
68	The Remediation of Chromium (VI)-Contaminated Soils Using Microbial Fuel Cells. Soil and Sediment Contamination, 2016, 25, 1-12.	1.1	64
69	Alternative strategies of nutrient acquisition and energy conservation map to the biogeography of marine ammonia-oxidizing archaea. ISME Journal, 2020, 14, 2595-2609.	4.4	62
70	Flavins mediate extracellular electron transfer in Gram-positive Bacillus megaterium strain LLD-1. Bioelectrochemistry, 2018, 119, 196-202.	2.4	61
71	A Single Ionic Conductor Based on Nafion and Its Electrochemical Properties Used As Lithium Polymer Electrolyte. Journal of Physical Chemistry B, 2004, 108, 1365-1370.	1.2	58
72	A one-compartment fructose/air biological fuel cell based on direct electron transfer. Biosensors and Bioelectronics, 2009, 25, 326-331.	5.3	56

#	Article	IF	CITATIONS
73	Anoxic biodegradation of triclosan and the removal of its antimicrobial effect in microbial fuel cells. Journal of Hazardous Materials, 2018, 344, 669-678.	6.5	56
74	Comparative study on the performance of pyrolyzed and plasma-treated iron(II) phthalocyanine-based catalysts for oxygen reduction in pH neutral electrolyte solutions. Journal of Power Sources, 2009, 193, 86-92.	4.0	54
75	Physiological Effect of XoxG(4) on Lanthanide-Dependent Methanotrophy. MBio, 2018, 9, .	1.8	54
76	Effects of Bio-Au Nanoparticles on Electrochemical Activity of Shewanella oneidensis Wild Type and ΔomcA/mtrC Mutant. Scientific Reports, 2013, 3, 3307.	1.6	52
77	Phosphorus-doped carbon derived from cellulose phosphate as efficient catalyst for air-cathode in microbial fuel cells. Journal of Power Sources, 2014, 261, 245-248.	4.0	52
78	The bacterial communities of bioelectrochemical systems associated with the sulfate removal under different pHs. Process Biochemistry, 2014, 49, 1345-1351.	1.8	52
79	Application of Multifunctional Nanomaterials in Radioprotection of Healthy Tissues. Advanced Healthcare Materials, 2018, 7, e1800421.	3.9	52
80	Methane-Dependent Mineral Reduction by Aerobic Methanotrophs under Hypoxia. Environmental Science and Technology Letters, 2020, 7, 606-612.	3.9	52
81	The Strong MRI Relaxivity of Paramagnetic Nanoparticles. Journal of Physical Chemistry B, 2008, 112, 6288-6291.	1.2	51
82	Bacterial community composition at anodes of microbial fuel cells for paddy soils: the effects of soil properties. Journal of Soils and Sediments, 2015, 15, 926-936.	1.5	51
83	Phosphorylation of SPOROCYTELESS/NOZZLE by the MPK3/6 Kinase Is Required for Anther Development. Plant Physiology, 2017, 173, 2265-2277.	2.3	51
84	Recovery of solid waste as functional heterogeneous catalysts for organic pollutant removal and biodiesel production. Chemical Engineering Journal, 2020, 401, 126104.	6.6	51
85	Rice straw-derived activated carbons for the removal of carbofuran from an aqueous solution. New Carbon Materials, 2014, 29, 47-54.	2.9	47
86	Toxicological Evaluation of Graphene-Family Nanomaterials. Journal of Nanoscience and Nanotechnology, 2020, 20, 1993-2006.	0.9	46
87	Identification of target organs of copper nanoparticles with ICP-MS technique. Journal of Radioanalytical and Nuclear Chemistry, 2007, 272, 599-603.	0.7	45
88	Novel bufferless photosynthetic microbial fuel cell (PMFCs) for enhanced electrochemical performance. Bioresource Technology, 2018, 255, 83-87.	4.8	45
89	Electrochemical and electrogenerated chemiluminescence of clay nanoparticles/Ru(bpy)32+ multilayer films on ITO electrodes. Analyst, The, 2004, 129, 657.	1.7	44
90	Functional role of mixed-culture microbe in photocatalysis coupled with biodegradation: Total organic carbon removal of ciprofloxacin. Science of the Total Environment, 2021, 784, 147049.	3.9	44

#	Article	IF	CITATIONS
91	Conducting polymer polypyrrole supported bilayer lipid membranes. Biosensors and Bioelectronics, 2005, 20, 1373-1379.	5.3	43
92	In situ measurements of dissolved oxygen, pH and redox potential of biocathode microenvironments using microelectrodes. Bioresource Technology, 2013, 132, 387-390.	4.8	42
93	Experimental and Theoretical Demonstrations for the Mechanism behind Enhanced Microbial Electron Transfer by CNT Network. Scientific Reports, 2014, 4, 3732.	1.6	42
94	Periodic polarity reversal for stabilizing the pH in two-chamber microbial electrolysis cells. Applied Energy, 2016, 165, 670-675.	5.1	42
95	Pyrosequencing Reveals a Core Community of Anodic Bacterial Biofilms in Bioelectrochemical Systems from China. Frontiers in Microbiology, 2015, 6, 1410.	1.5	40
96	A multiscale analysis of early flower development in Arabidopsis provides an integrated view of molecular regulation and growth control. Developmental Cell, 2021, 56, 540-556.e8.	3.1	37
97	Long-term operation of electroactive biofilms for enhanced ciprofloxacin removal capacity and anti-shock capabilities. Bioresource Technology, 2019, 275, 192-199.	4.8	36
98	Selective electrocatalysis of biofuel molecular oxidation using palladium nanoparticles generated on <i>Shewanella oneidensis</i> MR-1. Journal of Materials Chemistry A, 2018, 6, 10655-10662.	5.2	35
99	Nitrogen recovery from wastewater using microbial fuel cells. Frontiers of Environmental Science and Engineering, 2016, 10, 185-191.	3.3	34
100	Effective methods for extracting extracellular polymeric substances from Shewanella oneidensis MR-1. Water Science and Technology, 2016, 74, 2987-2996.	1.2	34
101	Interactions between iron mineral-humic complexes and hexavalent chromium and the corresponding bio-effects. Environmental Pollution, 2018, 241, 265-271.	3.7	34
102	Isolation, Identification and Characterization of an Electrogenic Microalgae Strain. PLoS ONE, 2013, 8, e73442.	1.1	33
103	In situ probing the effect of potentials on the microenvironment of heterotrophic denitrification biofilm with microelectrodes. Chemosphere, 2013, 93, 1295-1300.	4.2	31
104	Ultrahigh reactivity and grave nanotoxicity of copper nanoparticles. Journal of Radioanalytical and Nuclear Chemistry, 2007, 272, 595-598.	0.7	30
105	Phenothiazine Derivative-Accelerated Microbial Extracellular Electron Transfer in Bioelectrochemical System. Scientific Reports, 2013, 3, 1616.	1.6	30
106	Antibiotic resistance genes are increased by combined exposure to sulfamethoxazole and naproxen but relieved by low-salinity. Environment International, 2020, 139, 105742.	4.8	28
107	Electrochemical in situ FTIR spectroscopy studies directly extracellular electron transfer of Shewanella oneidensis MR-1. Electrochimica Acta, 2015, 170, 131-139.	2.6	27
108	A role for biosynthetic CdS quantum dots in extracellular electron transfer of Saccharomyces cerevisiae. Process Biochemistry, 2015, 50, 2061-2065.	1.8	27

#	Article	IF	CITATIONS
109	Leaching of vanadium from waste V2O5-WO3/TiO2 catalyst catalyzed by functional microorganisms. Science of the Total Environment, 2018, 639, 497-503.	3.9	27
110	Electron Communication of Bacillus subtilis in Harsh Environments. IScience, 2019, 12, 260-269.	1.9	27
111	Removal of Ethylene and Secondary Organic Aerosols Using UV-C254 + 185 nm with TiO2 Catalyst. Aerosol and Air Quality Research, 2013, 13, 618-626.	0.9	27
112	Modulation of Structural and Electronic Properties of Fullerene and Metallofullerenes by Surface Chemical Modifications. Journal of Nanoscience and Nanotechnology, 2007, 7, 1085-1101.	0.9	26
113	Xyloglucans and Microtubules Synergistically Maintain Meristem Geometry and Phyllotaxis. Plant Physiology, 2019, 181, 1191-1206.	2.3	26
114	A novel comb-like copolymer based polymer electrolyte for Li batteries. Journal of Power Sources, 2005, 139, 223-229.	4.0	24
115	Riboflavin-mediated extracellular electron transfer process involving Pachysolen tannophilus. Electrochimica Acta, 2016, 210, 117-121.	2.6	24
116	Rapid and efficient removal of naproxen from water by CuFe2O4 with peroxymonosulfate. Environmental Science and Pollution Research, 2020, 27, 21542-21551.	2.7	24
117	Leaching of indium from end-of-life LCD panels via catalysis by synergistic microbial communities. Science of the Total Environment, 2019, 655, 781-786.	3.9	23
118	Carbonized textile with free-standing threads as an efficient anode material for bioelectrochemical systems. Journal of Power Sources, 2015, 287, 269-275.	4.0	22
119	Framework of Cytochrome/Vitamin B ₂ Linker/Graphene for Robust Microbial Electricity Generation. ACS Applied Materials & Interfaces, 2018, 10, 35090-35098.	4.0	22
120	Coherency Matrix Decomposition-Based Polarimetric Persistent Scatterer Interferometry. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57, 7819-7831.	2.7	22
121	Effects of intragenomic polymorphism in the SSU rRNA gene on estimating marine microeukaryotic diversity: A test for ciliates using singleâ€cell highâ€throughput DNA sequencing. Limnology and Oceanography: Methods, 2019, 17, 533-543.	1.0	22
122	Comparative proteomics reveal the impact of OmcA/MtrC deletion on Shewanella oneidensis MR-1 in response to hexavalent chromium exposure. Applied Microbiology and Biotechnology, 2014, 98, 9735-9747.	1.7	20
123	Ameliorating acidic soil using bioelectrochemistry systems. RSC Advances, 2014, 4, 62544-62549.	1.7	20
124	Nanomaterial libraries and model organisms for rapid high-content analysis of nanosafety. National Science Review, 2018, 5, 365-388.	4.6	20
125	Interfacial electron transfer for carbon dioxide valorization in hybrid inorganic-microbial systems. Applied Energy, 2021, 292, 116885.	5.1	20
126	Switchable Semiconductive Property of the Polyhydroxylated Metallofullerene. Journal of Physical Chemistry B, 2007, 111, 11929-11934.	1.2	19

#	Article	IF	CITATIONS
127	Promoting electrogenic ability of microbes with negative pressure. Journal of Power Sources, 2013, 229, 79-83.	4.0	19
128	Interaction between in vivo bioluminescence and extracellular electron transfer in Shewanella woodyi via charge and discharge. Physical Chemistry Chemical Physics, 2017, 19, 1746-1750.	1.3	19
129	In situ observation of C60(C(COOH)2)2 interacting with living cells using fluorescence microscopy. Science Bulletin, 2006, 51, 1060-1064.	1.7	18
130	Enhanced bioleaching efficiency of copper from printed circuit boards without iron loss. Hydrometallurgy, 2018, 180, 65-71.	1.8	18
131	SMF-POLOPT: An Adaptive Multitemporal Pol(DIn)SAR Filtering and Phase Optimization Algorithm for PSI Applications. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57, 7135-7147.	2.7	18
132	Auxin guides germ-cell specification in <i>Arabidopsis</i> anthers. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	18
133	Polyaniline-coated carbon particles and their electrode behavior in organic carbonate electrolyte. Journal of Electroanalytical Chemistry, 2004, 570, 201-208.	1.9	17
134	Activities related to health, environmental and societal aspects of nanotechnology in China. Journal of Cleaner Production, 2008, 16, 1000-1002.	4.6	16
135	The pharmaceutical multi-activity of metallofullerenol invigorates cancer therapy. Nanoscale, 2019, 11, 14528-14539.	2.8	16
136	A Temporal Phase Coherence Estimation Algorithm and Its Application on DInSAR Pixel Selection. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57, 8350-8361.	2.7	16
137	Underground Coal Fire Detection and Monitoring Based on Landsat-8 and Sentinel-1 Data Sets in Miquan Fire Area, XinJiang. Remote Sensing, 2021, 13, 1141.	1.8	16
138	Polarization behavior of microbial fuel cells under stack operation. Science Bulletin, 2014, 59, 2214-2220.	1.7	15
139	Fgf-Signaling-Dependent Sox9a and Atoh1a Regulate Otic Neural Development in Zebrafish. Journal of Neuroscience, 2015, 35, 234-244.	1.7	15
140	Protein-directed synthesis of Bi ₂ S ₃ nanoparticles as an efficient contrast agent for visualizing the gastrointestinal tract. RSC Advances, 2017, 7, 17505-17513.	1.7	15
141	Sludge selection on the performance of sediment microbial fuel cells. International Journal of Energy Research, 2018, 42, 4250-4255.	2.2	15
142	Application of interface material and effects of oxygen gradient on the performance of single-chamber sediment microbial fuel cells (SSMFCs). Journal of Environmental Sciences, 2019, 75, 163-168.	3.2	15
143	Long-term adaptive evolution of Shewanella oneidensis MR-1 for establishment of high concentration Cr(VI) tolerance. Frontiers of Environmental Science and Engineering, 2020, 14, 1.	3.3	15
144	Microeukaryote communities exhibit phyla-specific distance-decay patterns and an intimate link between seawater and sediment habitats in the Western Pacific Ocean. Deep-Sea Research Part I: Oceanographic Research Papers, 2020, 160, 103279.	0.6	15

#	Article	IF	CITATIONS
145	A concise review on microbial remediation cells (MRCs) in soil and groundwater radionuclides remediation. Journal of Radioanalytical and Nuclear Chemistry, 2017, 314, 1477-1485.	0.7	14
146	Properties of a nanocomposite polymer electrolyte from an amorphous comb-branch polymer and nanoparticles. Journal of Solid State Electrochemistry, 2004, 8, 283-289.	1.2	13
147	Electrons selective uptake of a metal-reducing bacterium Shewanella oneidensis MR-1 from ferrocyanide. Biosensors and Bioelectronics, 2019, 142, 111571.	5.3	13
148	Redox-active humics support interspecies syntrophy and shift microbial community. Science China Technological Sciences, 2019, 62, 1695-1702.	2.0	12
149	Bioleaching of Electronic Waste Using Extreme Acidophiles. , 2019, , 153-174.		12
150	Extracellular electron transfer of Methylophilus methylotrophs. Process Biochemistry, 2020, 94, 313-318.	1.8	12
151	Interspecific competition by non-exoelectrogenic Citrobacter freundii An1 boosts bioelectricity generation of exoelectrogenic Shewanella oneidensis MR-1. Biosensors and Bioelectronics, 2021, 194, 113614.	5.3	12
152	Photochemical and Photophysical Properties of Three Carbon-Bridged Fullerene Dimers:  C121 (I, II, III). Journal of Physical Chemistry B, 2007, 111, 6344-6348.	1.2	11
153	Cancer therapy may get a boost from gold nanorods. Science Bulletin, 2015, 60, 279-280.	4.3	11
154	Encapsulation of a living bioelectrode by a hydrogel for bioelectrochemical systems in alkaline media. Journal of Materials Chemistry B, 2015, 3, 4641-4646.	2.9	10
155	One additional histone deacetylase and 2 histone acetyltransferases are involved in cellular patterning of Arabidopsis root epidermis. Plant Signaling and Behavior, 2016, 11, e1131373.	1.2	10
156	Liposoluble quinone promotes the reduction of hydrophobic mineral and extracellular electron transfer of Shewanella oneidensis MR-1. Innovation(China), 2021, 2, 100104.	5.2	10
157	Electrocatalytic activity of carbon nanoparticles from diffusion flame towards oxygen reduction. Electrochimica Acta, 2014, 136, 176-181.	2.6	9
158	Redox cycling of manganese by Bacillus horikoshii biET1 via oxygen switch. Electrochimica Acta, 2021, 375, 137963.	2.6	9
159	Polarimetric Persistent Scatterer Interferometry for Ground Deformation Monitoring with VV-VH Sentinel-1 Data. Remote Sensing, 2022, 14, 309.	1.8	9
160	A Novel Drug Design Strategy: An Inspiration from Encaging Tumor by Metallofullerenol Gd@C82(OH)22. Molecules, 2019, 24, 2387.	1.7	8
161	Stable establishment of organ polarity occurs several plastochrons before primordium outgrowth in <i>Arabidopsis</i> . Development (Cambridge), 2021, 148, .	1.2	8
162	Transforming cerussite to pyromorphite by immobilising Pb(II) using hydroxyapatite and Pseudomonas rhodesiae. Chemosphere, 2022, 287, 132235.	4.2	8

#	Article	IF	CITATIONS
163	Mutation in ε-Sarcoglycan Induces a Myoclonus-Dystonia Syndrome-Like Movement Disorder in Mice. Neuroscience Bulletin, 2021, 37, 311-322.	1.5	8
164	Degradation of diclofenac by B. subtilis through a cytochrome P450-dependent pathway. Environmental Technology and Innovation, 2020, 20, 101160.	3.0	7
165	Indium oxide nanoparticles induce lung intercellular toxicity between bronchial epithelial cells and macrophages. Journal of Applied Toxicology, 2020, 40, 1636-1646.	1.4	6
166	Effects of Titanium Dioxide Nanoparticles on Cell Growth and Migration of A549 Cells under Simulated Microgravity. Nanomaterials, 2022, 12, 1879.	1.9	6
167	Parallel Alignment of Carbon Nanotubes Induced with Inorganic Molecules. Langmuir, 2005, 21, 12068-12071.	1.6	5
168	Ag Nanoparticles Coated SWCNT with Surface Enhanced Raman Scattering (SERS) Signals. Journal of Nanoscience and Nanotechnology, 2010, 10, 8538-8543.	0.9	5
169	<l>In Vivo</l> Toxicity Evaluation of Graphene Oxide in <l>Drosophila Melanogaster</l> After Oral Administration. Journal of Nanoscience and Nanotechnology, 2016, 16, 7472-7478.	0.9	5
170	The new face of iron oxide nanoparticles: the bullets targeting tumor microenvironment for cancer therapy. Science Bulletin, 2016, 61, 1788-1790.	4.3	5
171	Effect of electrode potentials on the microbial community of photo bioelectrochemical systems. World Journal of Microbiology and Biotechnology, 2017, 33, 149.	1.7	5
172	Impact of SAR Image Resolution on Polarimetric Persistent Scatterer Interferometry With Amplitude Dispersion Optimization. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-10.	2.7	5
173	Conductive Property of Multiwall Carbon Nanotubes-PEO-Salt Nanocomposite Film. Electrochemical and Solid-State Letters, 2004, 7, E48.	2.2	4
174	Isomeric and Structural Impacts on Electron Acceptability of Carbon Cages in Atom-Bridged Fullerene Dimers. Journal of Physical Chemistry C, 2008, 112, 741-746.	1.5	4
175	Surface Functionalized Gold Nanorods: Tracking and Observing Live Cell via Three Optical Signals. Journal of Nanoscience and Nanotechnology, 2012, 12, 6893-6899.	0.9	4
176	Performance of bioelectrochemical systems inoculated with Desmodesmus sp. A8 under different light sources. Bioremediation Journal, 2016, 20, 233-239.	1.0	4
177	Epigenetics-based individual interventions against the health risks of PM2.5. Science Bulletin, 2017, 62, 743-744.	4.3	4
178	Visualization of cortical microtubule networks in plant cells by live imaging and immunostaining. STAR Protocols, 2021, 2, 100301.	0.5	4
179	Research on Electron Transfer in the Microenvironment of the Biofilm by Scanning Electrochemical Microscopy. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2019, 35, 22-27.	2.2	4
180	The Pneumotoxic Effect and Indium Ion Release Induced by Indium Tin Oxide Nanoparticles. Journal of Nanoscience and Nanotechnology, 2019, 19, 4357-4365.	0.9	3

#	Article	IF	CITATIONS
181	Organs Distribution and Injury After Repeated Intratracheal Instillations of Nano-In2O3 Particles into the Lungs of Wistar Rats. Journal of Nanoscience and Nanotechnology, 2020, 20, 1383-1390.	0.9	3
182	Synthesis and Structure of a Two-Dimensional Palladium Oxide Network on Reduced Graphene Oxide. Nano Letters, 2022, 22, 4854-4860.	4.5	3
183	Enhanced interfacial electron transfer between semiconductor and non-photosynthetic microorganism under visible light. Bioelectrochemistry, 2022, , 108195.	2.4	3
184	Electrochemical behavior of α-Keggin-type nanoparticles, Co(en)3(PMo12O40), in polyethylene glycol. Journal of Solid State Electrochemistry, 2003, 7, 337-343.	1.2	2
185	Electrochemical Study of PW12O in Poly(ethylene glycol) Electrolyte. Electroanalysis, 2003, 15, 695-701.	1.5	2
186	Voltage Reversal of Microbial Fuel Cells Stacked in Serial. Key Engineering Materials, 0, 609-610, 1422-1427.	0.4	2
187	Effect of Copper and Phosphate on the Biosynthesis of Palladium Nanoparticles by Shewanella oneidensis MRâ€1. ChemElectroChem, 2020, 7, 4460-4468.	1.7	2
188	Photothermal Killing of A549 Cells and Autophagy Induction by Bismuth Selenide Particles. Materials, 2021, 14, 3373.	1.3	2
189	Anaerobic Respiration on Nitarsone in Aquatic Environments by Shewanella oneidensis MR-1 Lacking Known C·As lyases. ACS ES&T Water, 2021, 1, 603-612.	2.3	2
190	Feedback current production by a ferrous mediator revealing the redox properties of Shewanella oneidensis MR-1. Journal of Electroanalytical Chemistry, 2022, 916, 116387.	1.9	2
191	Sorting the Unique Chirality, Right Handed Single Wall Carbon Nanotubes via the Dye Modified ssDNA. Journal of Nanoscience and Nanotechnology, 2011, 11, 7587-7592.	0.9	1
192	Local triple-therapy patch completely ablates tumor. Science Bulletin, 2017, 62, 204-205.	4.3	1
193	Nanostructured Ceria-Praseodymium and Ceria-Terbium Mixed Oxides: Relationship Between Structural Change and Catalytic Activity Towards CO Oxidation. Journal of Nanoscience and Nanotechnology, 2019, 19, 5999-6005.	0.9	1
194	Feasibility of Biological Applications for Zirconium Nitride Powders Synthesized by Gas–Solid Elemental Combination Method. Journal of Nanoscience and Nanotechnology, 2019, 19, 3319-3325.	0.9	1
195	Sulfur Pollutants Treatment Using Microbial Fuel Cells from Perspectives of Electrochemistry and Microbiology. Chinese Journal of Analytical Chemistry, 2013, 41, 1133.	0.9	1