Florence Dubois-Brissonnet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8616673/publications.pdf

Version: 2024-02-01

35 papers

2,245 citations

279798 23 h-index 35 g-index

38 all docs 38 docs citations

38 times ranked 2991 citing authors

#	Article	IF	CITATIONS
1	Spatial organisation of Listeria monocytogenes and Escherichia coli O157:H7 cultivated in gel matrices. Food Microbiology, 2022, 103, 103965.	4.2	5
2	Comparative assessment of the disinfection effectiveness of thymol and benzalkonium chloride against adapted and non-adapted to thymol biofilm cells of a Salmonella Typhimurium epidemic phage type DT193 strain. Food Control, 2021, 129, 108239.	5.5	9
3	Rapid assessment and prediction of the efficiency of two preservatives against S. aureus in cosmetic products using High Content Screening—Confocal Laser Scanning Microscopy. PLoS ONE, 2020, 15, e0236059.	2.5	6
4	Mosaic-CLSM Assessment of Bacterial Spatial Distribution in Cosmetic Matrices According to Matrix Viscosity and Bacterial Hydrophobicity. Cosmetics, 2020, 7, 32.	3.3	1
5	The Role of Biofilms in the Development and Dissemination of Microbial Resistance within the Food Industry. Foods, 2020, 9, 816.	4.3	13
6	Ferulic Acid and Eugenol Have Different Abilities to Maintain Their Inhibitory Activity Against Listeria monocytogenes in Emulsified Systems. Frontiers in Microbiology, 2019, 10, 137.	3.5	24
7	Characterization of Bacterial Membrane Fatty Acid Profiles for Biofilm Cells. Methods in Molecular Biology, 2019, 1918, 165-170.	0.9	3
8	Inhibitory activity of phenolic acids against Listeria monocytogenes: Deciphering the mechanisms of action using three different models. Food Microbiology, 2019, 80, 18-24.	4.2	48
9	Phenolic compounds can delay the oxidation of polyunsaturated fatty acids and the growth of <i>Listeria monocytogenes</i> : structureâ€activity relationships. Journal of the Science of Food and Agriculture, 2018, 98, 5401-5408.	3.5	27
10	Impact of Bacterial Membrane Fatty Acid Composition on the Failure of Daptomycin To Kill Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	54
11	Spatial Organization Plasticity as an Adaptive Driver of Surface Microbial Communities. Frontiers in Microbiology, 2017, 8, 1364.	3.5	44
12	The Biofilm Lifestyle Involves an Increase in Bacterial Membrane Saturated Fatty Acids. Frontiers in Microbiology, 2016, 7, 1673.	3.5	83
13	Hydrosol of Thymbra capitata Is a Highly Efficient Biocide against Salmonella enterica Serovar Typhimurium Biofilms. Applied and Environmental Microbiology, 2016, 82, 5309-5319.	3.1	33
14	Plant-derived compounds as natural antimicrobials to control paper mill biofilms. Journal of Industrial Microbiology and Biotechnology, 2014, 41, 87-96.	3.0	27
15	Adaptation of the Wine Bacterium Oenococcus oeni to Ethanol Stress: Role of the Small Heat Shock Protein Lo18 in Membrane Integrity. Applied and Environmental Microbiology, 2014, 80, 2973-2980.	3.1	58
16	Biofilms of a Bacillus subtilis Hospital Isolate Protect Staphylococcus aureus from Biocide Action. PLoS ONE, 2012, 7, e44506.	2.5	89
17	Resistance of bacterial biofilms to disinfectants: a review. Biofouling, 2011, 27, 1017-1032.	2.2	673
18	Inhibition of Listeria monocytogenes by resident biofilms present on wooden shelves used for cheese ripening. Food Control, 2011, 22, 1357-1362.	5.5	65

#	Article	IF	CITATIONS
19	Comparative biocidal activity of peracetic acid, benzalkonium chloride and ortho-phthalaldehyde on 77 bacterial strains. Journal of Hospital Infection, 2011, 78, 208-213.	2.9	42
20	Dynamics of the Action of Biocides in Pseudomonas aeruginosa Biofilms. Antimicrobial Agents and Chemotherapy, 2011, 55, 2648-2654.	3.2	103
21	Induction of Fatty Acid Composition Modifications and Tolerance to Biocides in <i>Salmonella enterica</i> Serovar Typhimurium by Plant-Derived Terpenes. Applied and Environmental Microbiology, 2011, 77, 906-910.	3.1	54
22	Deciphering Biofilm Structure and Reactivity by Multiscale Time-Resolved Fluorescence Analysis. Advances in Experimental Medicine and Biology, 2011, 715, 333-349.	1.6	21
23	The Spatial Architecture of Bacillus subtilis Biofilms Deciphered Using a Surface-Associated Model and In Situ Imaging. PLoS ONE, 2011, 6, e16177.	2.5	59
24	The biofilm architecture of sixty opportunistic pathogens deciphered using a high throughput CLSM method. Journal of Microbiological Methods, 2010, 82, 64-70.	1.6	209
25	Effects of pH and oil-in-water emulsions on growth and physicochemical cell surface properties of Listeria monocytogenes: Impact on tolerance to the bactericidal activity of disinfectants. International Journal of Food Microbiology, 2009, 130, 101-107.	4.7	24
26	Growth Response of Salmonella Typhimurium in the Presence of Natural and Synthetic Antimicrobials: Estimation of MICs from Three Different Models. Journal of Food Protection, 2007, 70, 2243-2250.	1.7	21
27	Modeling the inhibition of Salmonella typhimurium growth by combination of food antimicrobials. International Journal of Food Microbiology, 2007, 115, 95-109.	4.7	11
28	Combinations of food antimicrobials at low levels to inhibit the growth of Salmonella sv. Typhimurium: a synergistic effect?. Food Microbiology, 2005, 22, 391-398.	4.2	174
29	Resistance of spheroplasts and whole cells of Pseudomonas aeruginosa to bactericidal activity of various biocides: evidence of the membrane implication. Microbiological Research, 2004, 159, 51-57.	5.3	17
30	Effect of various environmental parameters on the recovery of sublethally salt-damaged and acid-damaged Listeria monocytogenes. Journal of Applied Microbiology, 2000, 89, 944-950.	3.1	42
31	Quaternary ammonium compound stresses induce specific variations in fatty acid composition of Pseudomonas aeruginosa. International Journal of Food Microbiology, 2000, 55, 157-159.	4.7	48
32	Effect of temperature and physiological state on the fatty acid composition of Pseudomonas aeruginosa. International Journal of Food Microbiology, 2000, 55, 79-81.	4.7	12
33	Adaptation ofPseudomonas aeruginosaATCC 15442 to didecyldimethylammonium bromide induces changes in membrane fatty acid composition and in resistance of cells. Journal of Applied Microbiology, 1999, 86, 859-866.	3.1	85
34	Specific variations of fatty acid composition of Pseudomonas aeruginosa ATCC 15442 induced by Quaternary Ammonium Compounds and relation with resistance to bactericidal activity. Journal of Applied Microbiology, 1999, 87, 735-742.	3.1	53
35	Adaptation of Salmonella to Antimicrobials in Food-Processing Environments. , 0, , .		2