
George Kiriakidis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8616174/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Low-energy consumption CuSCN-based ultra-low-ppb level ozone sensor, operating at room temperature. Sensors and Actuators A: Physical, 2022, 338, 113462.	2.0	1
2	ZnWO4 nanoparticles as efficient photocatalyst for degradation of para-aminobenzoic acid: Impact of annealing temperature on photocatalytic performance. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 406, 113002.	2.0	16
3	Study on the Ozone Gas Sensing Properties of rf-Sputtered Al-Doped NiO Films. Applied Sciences (Switzerland), 2021, 11, 3104.	1.3	12
4	Titanate-PMMA composites in photoluminescence based oxygen sensing. Materials Science in Semiconductor Processing, 2021, 133, 105942.	1.9	2
5	Metal Titanate (ATiO3, A: Ni, Co, Mg, Zn) Nanorods for Toluene Photooxidation under LED Illumination. Applied Sciences (Switzerland), 2021, 11, 10850.	1.3	9
6	High performance hydrogen gas sensors based on PdO-decorated p-type CoV2O6 nanoparticles. Sensors and Actuators B: Chemical, 2020, 324, 128744.	4.0	22
7	Smart Surfaces: Heterogeneous Photo-Catalysis on TiO2 Based Coatings for De-pollution Purposes in Indoor and Outdoor Environments. Topics in Catalysis, 2020, 63, 875-881.	1.3	6
8	Highly sensitive and selective NO2 chemical sensors based on Al doped NiO thin films. Materials Science in Semiconductor Processing, 2020, 115, 105149.	1.9	14
9	Porous CoxNi1-xTiO3 nanorods for solar photocatalytic degradation of ethyl paraben. Journal of Materiomics, 2020, 6, 788-799.	2.8	10
10	Transparent p-type NiO:Al thin films as room temperature hydrogen and methane gas sensors. Materials Science in Semiconductor Processing, 2020, 109, 104922.	1.9	24
11	Degradation of Sulfamethoxazole Using Iron-Doped Titania and Simulated Solar Radiation. Catalysts, 2019, 9, 612.	1.6	31
12	Hierarchically Porous Cu-, Co-, and Mn-Doped Platelet-Like ZnO Nanostructures and Their Photocatalytic Performance for Indoor Air Quality Control. ACS Omega, 2019, 4, 16429-16440.	1.6	42
13	Ligand-free all-inorganic metal halide nanocubes for fast, ultra-sensitive and self-powered ozone sensors. Nanoscale Advances, 2019, 1, 2699-2706.	2.2	44
14	Thermochromic Behavior of VO2/Polymer Nanocomposites for Energy Saving Coatings. Coatings, 2019, 9, 163.	1.2	21
15	Highly sensitive and room temperature detection of ultra-low concentrations of O ₃ using self-powered sensing elements of Cu ₂ O nanocubes. Nanoscale Advances, 2019, 1, 2009-2017.	2.2	15
16	Long-term stability of transparent n/p ZnO homojunctions grown by rf-sputtering at room-temperature. Journal of Materiomics, 2019, 5, 428-435.	2.8	8
17	A Promising Technological Approach to Improve Indoor Air Quality. Applied Sciences (Switzerland), 2019, 9, 4837.	1.3	10
18	Vanadium oxide nanostructured thin films prepared by Aerosol Spray Pyrolysis for gas sensing and thermochromic applications. Materials Science in Semiconductor Processing, 2019, 89, 116-120.	1.9	9

#	Article	IF	CITATIONS
19	Photocatalytic oxidation of gaseous benzene, toluene and xylene under UV and visible irradiation over Mn-doped TiO2 nanoparticles. Journal of Materiomics, 2019, 5, 56-65.	2.8	51
20	Effect of metal doped and co-doped TiO2 photocatalysts oriented to degrade indoor/outdoor pollutants for air quality improvement. A kinetic and product study using acetaldehyde as probe molecule. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 371, 255-263.	2.0	38
21	Largeâ€Area Allâ€Printed Temperature Sensing Surfaces Using Novel Composite Thermistor Materials. Advanced Electronic Materials, 2019, 5, 1800605.	2.6	68
22	A life cycle assessment of PCM and VIP in warm Mediterranean climates and their introduction as a strategy to promote energy savings and mitigate carbon emissions. AIMS Materials Science, 2019, 6, 944-959.	0.7	13
23	Low-temperature rf sputtered VO2 thin films as thermochromic coatings for smart glazing systems. Solar Energy, 2018, 165, 115-121.	2.9	36
24	Study of innovative photocatalytic cement based coatings: The effect of supporting materials. Construction and Building Materials, 2018, 168, 923-930.	3.2	33
25	Solar photocatalytic degradation of propyl paraben in Al-doped TiO2 suspensions. Catalysis Today, 2018, 313, 148-154.	2.2	33
26	Solution Processed CH ₃ NH ₃ PbI _{3–<i>x</i>} Cl _{<i>x</i>} Perovskite Based Self-Powered Ozone Sensing Element Operated at Room Temperature. ACS Sensors, 2018, 3, 135-142.	4.0	96
27	Fabrication of Visible Light-Induced Antibacterial and Self-Cleaning Cotton Fabrics Using Manganese Doped TiO ₂ Nanoparticles. ACS Applied Bio Materials, 2018, 1, 1154-1164.	2.3	72
28	Multimodal microscopy test standard for scanning microwave, electron, force and optical microscopy. Journal of Micro-Bio Robotics, 2018, 14, 51-57.	2.1	3
29	An overview of photocatalytic materials. Journal of Materiomics, 2017, 3, 1-2.	2.8	36
30	Life cycle assessment of facile microwave-assisted zinc oxide (ZnO) nanostructures. Science of the Total Environment, 2017, 586, 566-575.	3.9	28
31	Insights into the Performance of Co _{<i>x</i>} Ni _{1–<i>x</i>} TiO ₃ Solid Solutions as Photocatalysts for Sun-Driven Water Oxidation. ACS Applied Materials & Interfaces, 2017, 9, 40290-40297.	4.0	23
32	Highly Selective Adsorbent and Photacatalytic Material for Industrial Wastewater Treatment. Advanced Engineering Materials, 2017, 19, 1600661.	1.6	3
33	Modified TiO 2 based photocatalysts for improved air and health quality. Journal of Materiomics, 2017, 3, 3-16.	2.8	181
34	Transmission lines thermal switches utilizing novel phase changing materials. , 2017, , .		1
35	Room Temperature <i> p</i> -Type NiO Nanostructure Thin Film Sensor for Hydrogen and Methane Detection. Sensor Letters, 2017, 15, 663-667.	0.4	12
36	Low temperature rf-sputtered thermochromic VO2 films on flexible glass substrates. Advanced Materials Letters, 2017, 8, 757-761.	0.3	16

#	Article	IF	CITATIONS
37	On the growth of transparent conductive oxide ternary alloys Zn–Ir–O (ZIRO) by the means of rf magnetron co-sputtering. Thin Solid Films, 2016, 617, 3-8.	0.8	7
38	Correlating the magnetism and gas sensing properties of Mn-doped ZnO films enhanced by UV irradiation. RSC Advances, 2016, 6, 26227-26238.	1.7	45
39	Study of low temperature rf-sputtered Mg-doped vanadium dioxide thermochromic films deposited on low-emissivity substrates. Thin Solid Films, 2016, 601, 99-105.	0.8	37
40	On the connection between photo catalytic activities and magnetic properties of TiO2â^'x films. Journal of Alloys and Compounds, 2016, 654, 344-348.	2.8	0
41	Ageing Resistant Indium Oxide Ozone Sensing Films. Sensor Letters, 2016, 14, 563-566.	0.4	8
42	Atmospheric Pressure Chemical Vapor Deposition Of Amorphous Tungsten Doped Vanadium Dioxide ForÂsmart Window Applications Â. Advanced Materials Letters, 2016, 7, 192-196.	0.3	19
43	Effect of O ₂ flow rate on the thermochromic performance of VO ₂ coatings grown by atmospheric pressure CVD. Physica Status Solidi C: Current Topics in Solid State Physics, 2015, 12, 856-860.	0.8	9
44	The effect of buffer layer on the thermochromic properties of undoped radio frequency sputtered VO2 thin films. Thin Solid Films, 2015, 594, 310-315.	0.8	24
45	Effect of solution chemistry on the characteristics of hydrothermally grown WO3 for electroactive applications. Thin Solid Films, 2015, 594, 333-337.	0.8	13
46	Study of the pH effect on the properties of the hydrothermally grown V2O5. Thin Solid Films, 2015, 594, 338-342.	0.8	4
47	A study on the sensing of NO2 and O2 utilizing ZnO films grown by aerosol spray pyrolysis. Materials Chemistry and Physics, 2015, 162, 628-639.	2.0	20
48	Inactivation of MS2 coliphage in sewage by solar photocatalysis using metal-doped TiO2. Applied Catalysis B: Environmental, 2015, 178, 54-64.	10.8	59
49	Study of the generated genetic polymorphisms during the photocatalytic elimination of Klebsiella pneumoniae in water. Photochemical and Photobiological Sciences, 2015, 14, 506-513.	1.6	5
50	Defect-induced magnetism in undoped and Mn-doped wide band gap zinc oxide grown by aerosol spray pyrolysis. Applied Surface Science, 2014, 311, 14-26.	3.1	43
51	Metal oxide semiconductors as visible light photocatalysts. Journal of the Korean Physical Society, 2014, 65, 297-302.	0.3	23
52	An instant photo-excited electrons relaxation on the photo-degradation properties of TiO2â^'x films. Journal of Photochemistry and Photobiology A: Chemistry, 2014, 293, 72-80.	2.0	11
53	Tribological investigation of piezoelectric ZnO films for rolling contact-based energy harvesting and sensing applications. Thin Solid Films, 2014, 555, 68-75.	0.8	6
54	Orientation-dependent low field magnetic anomalies and room-temperature spintronic material – Mn doped ZnO films by aerosol spray pyrolysis. Journal of Alloys and Compounds, 2013, 579, 485-494.	2.8	19

#	Article	IF	CITATIONS
55	Optical constants correlated electrons-spin of micro doughnuts of Mn-doped ZnO films. Applied Surface Science, 2013, 280, 79-88.	3.1	6
56	Structural and optical properties of ZnO nanostructures grown by aerosol spray pyrolysis: Candidates for room temperature methane and hydrogen gas sensing. Applied Surface Science, 2013, 279, 142-149.	3.1	35
57	Correlation between morphology and electro-optical properties of nanostructured CdO thin films: Influence of Al doping. Surface and Coatings Technology, 2012, 213, 15-20.	2.2	58
58	Ultra-low gas sensing utilizing metal oxide thin films. Vacuum, 2012, 86, 495-506.	1.6	33
59	Characterization and Gas-sensing Performance of Spray Pyrolysed In2O3Thin Films: Substrate Temperature Effect. Transactions on Electrical and Electronic Materials, 2012, 13, 111-115.	1.0	22
60	Determination of photo-catalytic activity of un-doped and Mn-doped TiO2 anatase powders on acetaldehyde under UV and visible light. Thin Solid Films, 2011, 520, 1195-1201.	0.8	70
61	Studies on photo-induced NO removal by Mn-doped TiO2 under indoor-like illumination conditions. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 222, 304-306.	2.0	18
62	Effect of Gold Doping on the Structural, Electrical and Volatile Sensitivity of Spray Pyrolysis ZnO Thin Films. Sensor Letters, 2011, 9, 1712-1717.	0.4	4
63	Mechanical properties of ZnO thin films deposited on polyester substrates used in flexible device applications. Thin Solid Films, 2010, 519, 325-330.	0.8	63
64	Optical sensor with transparent conductive oxides electrodes for microposition detection applications. Thin Solid Films, 2009, 518, 1057-1059.	0.8	6
65	The effect of Au and Pt nanoclusters on the structural and hydrogen sensing properties of SnO2 thin films. Thin Solid Films, 2009, 518, 1109-1113.	0.8	35
66	Structural analysis of aerosol spray pyrolysis ZnO films exhibiting ultra low ozone detection limits at room temperature. Thin Solid Films, 2009, 518, 1208-1213.	0.8	26
67	TCO2008 Illuminates Latest Research in Transparent Conductive Oxides. MRS Bulletin, 2009, 34, 212-212.	1.7	0
68	Nano-structural and surface characteristics of non-stoichiometric In _{2O_{3−x thin films. International Journal of Nanotechnology, 2009, 6, 208.}}	0.1	1
69	Optical and structural properties of ZnO for transparent electronics. Thin Solid Films, 2008, 516, 1345-1349.	0.8	74
70	2nd International Symposium on Transparent Conductive Oxides (TCO2008) to Be Held in October 2008. MRS Bulletin, 2008, 33, 709-709.	1.7	0
71	ZnO Thin Films for Cantilever Coatings: Structural and Mechanical Properties, Observations of Photoplastic Effect. Sensor Letters, 2008, 6, 558-563.	0.4	2
72	On the Road to Inexpensive, sub-ppb, Room Temperature Ozone Detectors. Sensor Letters, 2008, 6, 812-816.	0.4	6

#	Article	IF	CITATIONS
73	Comparative study of zinc oxide and aluminum doped zinc oxide transparent thin films grown by direct current magnetron sputtering. Thin Solid Films, 2007, 515, 6562-6566.	0.8	179
74	Structural characterization of ZnO thin films deposited by dc magnetron sputtering. Thin Solid Films, 2007, 515, 8577-8581.	0.8	36
75	Substrate temperature influence on the properties of nanostructured ZnO transparent ultrathin films grown by PLD. Applied Surface Science, 2007, 253, 8141-8145.	3.1	26
76	Pure and Nb2O5-doped TiO2 amorphous thin films grown by dc magnetron sputtering at room temperature: Surface and photo-induced hydrophilic conversion studies. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2007, 144, 54-59.	1.7	13
77	Correlation of ZnO thin film surface properties with conductivity. Applied Physics A: Materials Science and Processing, 2007, 89, 57-61.	1.1	44
78	Ozone sensing properties of ZnO nanostructures grown by the aqueous chemical growth technique. Sensors and Actuators B: Chemical, 2007, 124, 187-191.	4.0	49
79	Thickness influence on surface morphology and ozone sensing properties of nanostructured ZnO transparent thin films grown by PLD. Applied Surface Science, 2006, 252, 5351-5354.	3.1	65
80	Low temperature indium oxide gas sensors. Sensors and Actuators B: Chemical, 2006, 118, 135-141.	4.0	80
81	ZnO transparent thin films for gas sensor applications. Thin Solid Films, 2006, 515, 551-554.	0.8	290
82	Indium oxide as a possible tunnel barrier in spintronic devices. Thin Solid Films, 2005, 471, 293-297.	0.8	15
83	Zinc oxide as an ozone sensor. Journal of Applied Physics, 2004, 96, 1398-1408.	1.1	181
84	Photon sensitive high index metal oxide films. Journal of Physics Condensed Matter, 2004, 16, S3757-S3768.	0.7	8
85	Ozone sensing properties of DC-sputtered, c-axis oriented ZnO films at room temperature. Sensors and Actuators B: Chemical, 2003, 96, 76-81.	4.0	40
86	Highly Sensitive ZnO Ozone Detectors at Room Temperature. Japanese Journal of Applied Physics, 2003, 42, L435-L437.	0.8	55
87	Two-dimensional metallic photonic band-gap crystals fabricated by LIGA. Microsystem Technologies, 2002, 8, 74-77.	1.2	17
88	Production and characterization of zinc oxide thin films for room temperature ozone sensing. Thin Solid Films, 2002, 418, 45-50.	0.8	82
89	Dependence of the photoreduction and oxidation behavior of indium oxide films on substrate temperature and film thickness. Journal of Applied Physics, 2001, 90, 5382-5387.	1.1	106
90	Ozone Sensing Properties of Polycrystalline Indium Oxide Films at Room Temperature. Physica Status Solidi A, 2001, 185, 27-32.	1.7	43

#	Article	IF	CITATIONS
91	The influence of deposition parameters on room temperature ozone sensing properties of InOx films. Sensors and Actuators B: Chemical, 2001, 80, 155-161.	4.0	100
92	Gratings in indium oxide film overlayers on ion-exchanged waveguides by excimer laser micromachining. Applied Physics Letters, 2001, 78, 694-696.	1.5	18
93	Structural characterization of molecular beam epitaxy grown ZnSe-based layers on GaAs substrates for blue–green laser diodes. Thin Solid Films, 2000, 360, 195-204.	0.8	4
94	Laser-machined layer-by-layer metallic photonic band-gap structures. Applied Physics Letters, 1999, 74, 3263-3265.	1.5	15
95	Permanent holographic recording in indium oxide thin films using 193 nm excimer laser radiation. Applied Physics A: Materials Science and Processing, 1999, 69, 333-336.	1.1	19
96	Structural and chemical characterization of as-deposited microcrystalline indium oxide films prepared by dc reactive magnetron sputtering. Journal of Electronic Materials, 1999, 28, 26-34.	1.0	8
97	Study of the ambient optical recording dynamics on sputtered indium oxide thin films. Applied Physics A: Materials Science and Processing, 1998, 66, 651-654.	1.1	8
98	Chemical characterization of as-deposited microcrystalline indium oxide films prepared by reactive dc magnetron sputtering. Applied Physics A: Materials Science and Processing, 1998, 67, 295-301.	1.1	5
99	Fabrication of photonic crystals by deep x-ray lithography. Applied Physics Letters, 1997, 71, 1441-1443.	1.5	129
100	Photoreduction and oxidation of asâ€deposited microcrystalline indium oxide. Journal of Applied Physics, 1996, 79, 9349-9352.	1.1	73
101	Optical and electrical characterization of high quality β-FeSi2 thin films grown by solid phase epitaxy. Applied Surface Science, 1996, 102, 178-183.	3.1	21
102	Infrared spectroscopic and electronic transport properties of polycrystalline semiconducting FeSi2 thin films. Journal of Applied Physics, 1996, 80, 962-968.	1.1	35
103	Holographic recording in indium–oxide (In2O3) and indium–tin–oxide (In2O3:Sn) thin films. Applied Physics Letters, 1996, 69, 2459-2461.	1.5	25
104	Structural study of InxGa1-xP/GaAs interfaces grown by MOMBE. Semiconductor Science and Technology, 1992, 7, A127-A130.	1.0	2
105	Electrical and structural properties of Ga0.51In0.49P/GaAs heterojunctions grown by metalorganic vaporâ€phase epitaxy. Applied Physics Letters, 1992, 60, 2749-2751.	1.5	23
106	Lowâ€ŧemperature dc characteristics of S―and Siâ€doped Ga0.51In0.49P/GaAs high electron mobility transistors grown by metalorganic molecular beam epitaxy. Applied Physics Letters, 1992, 60, 3162-3164.	1.5	18
107	Deep level analysis of undoped Gax In1-x P/GaAs single heterojunctions grown by MOMBE and MOVPE. Sensors and Actuators A: Physical, 1992, 33, 63-66.	2.0	4
108	Effect of doping on electron traps in metalorganic molecularâ€beam epitaxial GaxIn1â^'xP/GaAs heterostructures. Applied Physics Letters, 1991, 59, 3127-3129.	1.5	37

#	Article	IF	CITATIONS
109	Modifications in αâ€6i:H during thermal annealing:Insituspectroscopic ellipsometry. Journal of Applied Physics, 1991, 70, 2791-2798.	1.1	21
110	Microstructural properties and density dependence of the optical properties of microcrystalline silicon films by spectroscopic ellipsometry and electron microscopy. Thin Solid Films, 1989, 169, 87-104.	0.8	4
111	Optical properties and structure of microcrystalline hydrogenated silicon prepared by radioâ€frequency magnetron sputtering. Journal of Applied Physics, 1988, 64, 2389-2398.	1.1	25
112	Formation of (100)GaAs on (100) silicon by laser recrystallization. Applied Physics Letters, 1986, 48, 1516-1518.	1.5	9