Virginie Zeninari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8615972/publications.pdf

Version: 2024-02-01

		304743	454955
52	1,073	22	30
papers	citations	h-index	g-index
52	52	52	827
32	32	32	027
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	How Does Gas-Phase CO ₂ Evolve in the Headspace of Champagne Glasses?. Journal of Agricultural and Food Chemistry, 2021, 69, 2262-2270.	5. 2	6
2	A first step towards the mapping of gas-phase CO2 in the headspace of champagne glasses. Infrared Physics and Technology, 2020, 109, 103437.	2.9	1
3	Widely-Tunable Quantum Cascade-Based Sources for the Development of Optical Gas Sensors. Sensors, 2020, 20, 6650.	3.8	5
4	Development and validation of a diode laser sensor for gas-phase CO2 monitoring above champagne and sparkling wines. Sensors and Actuators B: Chemical, 2018, 257, 745-752.	7.8	19
5	Intracavity Gas Detection with an extended-cavity Quantum Cascade Laser emitting @ 7.6 1 /4m. , 2018, , .		O
6	Test and Development of an OPO-Based Spectrometer for SAFESIDE - An INTERREG V Project for Gases Detection. , 2018, , .		0
7	Monitoring gas-phase CO2 in the headspace of champagne glasses through combined diode laser spectrometry and micro-gas chromatography analysis. Food Chemistry, 2018, 264, 255-262.	8.2	22
8	Applications of IR Laser Spectrometry to the Monitoring of Gaseous CO2 in the Headspace of Champagne Glasses. , 2018, , .		0
9	Multi-gas sensing with quantum cascade laser array in the mid-infrared region. Applied Physics B: Lasers and Optics, 2017, 123, 1.	2.2	28
10	External cavity coherent quantum cascade laser array. Infrared Physics and Technology, 2016, 76, 415-420.	2.9	4
11	Miniaturized differential Helmholtz resonators for photoacoustic trace gas detection. Sensors and Actuators B: Chemical, 2016, 236, 1104-1110.	7.8	35
12	Photoacoustic Detection of Methane in Large Concentrations with a Helmholtz Sensor: Simulation and Experimentation. International Journal of Thermophysics, 2016, 37, 1.	2.1	14
13	Optimization and complete characterization of a photoacoustic gas detector. Applied Physics B: Lasers and Optics, 2015, 118, 319-326.	2.2	8
14	Challenges in the Design and Fabrication of a Lab-on-a-Chip Photoacoustic Gas Sensor. Sensors, 2014, 14, 957-974.	3.8	24
15	Quantitative simulation of photoacoustic signals using finite element modelling software. Applied Physics B: Lasers and Optics, 2013, 111, 383-389.	2.2	30
16	Carbon Dioxide and Ethanol Release from Champagne Glasses, Under Standard Tasting Conditions. Advances in Food and Nutrition Research, 2012, 67, 289-340.	3.0	1
17	Wavelet Denoising for Infrared Laser Spectroscopy and Gas Detection. Applied Spectroscopy, 2012, 66, 700-710.	2.2	15
18	Unraveling the evolving nature of gaseous and dissolved carbon dioxide in champagne wines: A state-of-the-art review, from the bottle to the tasting glass. Analytica Chimica Acta, 2012, 732, 1-15.	5.4	23

#	Article	IF	CITATIONS
19	Self-induced pressure shift and temperature dependence measurements of CO2 at 2.05î¼m with a tunable diode laser spectrometer. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2012, 85, 74-78.	3.9	15
20	Continuous-wave quantum cascade lasers absorption spectrometers for trace gas detection in the atmosphere. Laser Physics, 2011, 21, 805-812.	1.2	19
21	Development of a versatile atmospheric N2O sensor based on quantum cascade laser technology at 4.5 μm. Applied Physics B: Lasers and Optics, 2011, 103, 717-723.	2.2	18
22	Tunable diode laser measurement of pressure-induced shift coefficients of CO2 around 2.05 $\hat{l}^{1}/4$ m for Lidar application. Journal of Quantitative Spectroscopy and Radiative Transfer, 2011, 112, 1411-1419.	2.3	21
23	Photoacoustic spectroscopy for trace gas detection with cryogenic and room-temperature continuous-wave quantum cascade lasers. Open Physics, 2010, 8, .	1.7	7
24	Near infrared diode laser spectroscopy of C2H2, H2O, CO2 andÂtheir isotopologues and the application to TDLAS, a tunable diode laser spectrometer for the martian PHOBOS-GRUNT space mission. Applied Physics B: Lasers and Optics, 2010, 99, 339-351.	2.2	78
25	Self-broadening coefficients and positions of acetylene around 1.533νm studied by high-resolution diode laser absorption spectrometry. Journal of Quantitative Spectroscopy and Radiative Transfer, 2010, 111, 2332-2340.	2.3	25
26	Inter-comparison of 2νm Heterodyne Differential Absorption Lidar, Laser Diode Spectrometer, LICOR NDIR analyzer and flasks measurements of near-ground atmospheric CO2 mixing ratio. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2009, 71, 1914-1921.	3.9	9
27	Diode laser spectroscopy of two acetylene isotopologues (12C2H2, 13C12CH2) in the 1.533μm region for the PHOBOS-Grunt space mission. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2009, 74, 1204-1208.	3.9	13
28	Alternative method for gas detection using pulsed quantum-cascade-laser spectrometers. Optics Letters, 2009, 34, 181.	3.3	16
29	Laser diode absorption spectroscopy for accurate CO $_2$ line parameters at 2 $\hat{1}$ /4m: consequences for space-based DIAL measurements and potential biases. Applied Optics, 2009, 48, 5475.	2.1	27
30	A Case Study of CO2, CO and Particles Content Evolution in the Suburban Atmospheric Boundary Layer Using a $2-\hat{1}\sqrt{4}$ m Doppler DIAL, a $1-\hat{1}\sqrt{4}$ m Backscatter Lidar and an Array of In-situ Sensors. Boundary-Layer Meteorology, 2008, 128, 381-401.	2.3	6
31	Laser diode spectroscopy of H2O at 2.63Âμm for atmospheric applications. Applied Physics B: Lasers and Optics, 2008, 90, 573-580.	2.2	26
32	A complete study of CO2 line parameters around 4845cmâ^1 for Lidar applications. Journal of Quantitative Spectroscopy and Radiative Transfer, 2008, 109, 426-434.	2.3	31
33	Quantum cascade laser spectroscopy of N2O in the $7.9 \hat{l} \frac{1}{4}$ m region for the in situ monitoring of the atmosphere. Journal of Quantitative Spectroscopy and Radiative Transfer, 2008, 109, 1845-1855.	2.3	14
34	Laser diode spectroscopy of the H2O isotopologues in the 2.64 \hat{l} /4m region for the in situ monitoring of the Martian atmosphere. Infrared Physics and Technology, 2008, 51, 229-235.	2.9	11
35	Development of a spectrometer using a continuous wave distributed feedback quantum cascade laser operating at room temperature for the simultaneous analysis of N_2O and CH_4 in the Earth's atmosphere. Applied Optics, 2008, 47, 1206.	2.1	17
36	Photoacoustic detection of nitric oxide with a Helmholtz resonant quantum cascade laser sensor. Infrared Physics and Technology, 2007, 51, 95-101.	2.9	28

#	Article	IF	Citations
37	Development of a compact CO2 sensor open to the atmosphere and based on near-infrared laser technology at 2.68Âμm. Applied Physics B: Lasers and Optics, 2007, 86, 743-748.	2.2	39
38	Water-vapor isotope ratio measurements in air with a quantum-cascade laser spectrometer. Optics Letters, 2006, 31, 143.	3.3	17
39	The absorption line profiles of H2O near 1.39 \hat{l} 4m in binary mixtures with N2, O2, and H2 at low pressures. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2006, 100, 682-688.	0.6	3
40	Line strengths and self-broadening coefficients of carbon dioxide isotopologues (13CO2 and) Tj ETQq0 0 0 rgBT / Quantitative Spectroscopy and Radiative Transfer, 2006, 98, 264-276.	Overlock 1 2.3	.0 Tf 50 627 20
41	A complete study of the line intensities of four bands of CO2 around 1.6 and $2.01\frac{1}{4}$ m: A comparison between Fourier transform and diode laser measurements. Journal of Quantitative Spectroscopy and Radiative Transfer, 2006, 101, 325-338.	2.3	61
42	A spectroscopic study of water vapor isotopologues H216O, H218O and HDO using a continuous wave DFB quantum cascade laser in the $6.7\hat{l}\frac{1}{4}$ m region for atmospheric applications. Journal of Quantitative Spectroscopy and Radiative Transfer, 2006, 102, 129-138.	2.3	17
43	New improvements in methane detection using a Helmholtz resonant photoacoustic laser sensor: A comparison between near-IR diode lasers and mid-IR quantum cascade lasers. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2006, 63, 1021-1028.	3.9	31
44	Diode laser spectroscopy of H2O and CO2 in the $1.877 - \hat{1}\frac{1}{4}$ m region for the in situ monitoring of the Martian atmosphere. Applied Physics B: Lasers and Optics, 2006, 82, 133-140.	2.2	28
45	Laboratory spectroscopic calibration of infrared tunable laser spectrometers for the in situ sensing of the Earth and Martian atmospheres. Applied Physics B: Lasers and Optics, 2006, 85, 265-272.	2.2	32
46	Development of a Compact Instrument using Fiber Laser based Difference-Frequency Generation Source for Chemical Gas Detection. , 2006, , .		0
47	Pressure-broadening coefficients and line strengths of H2O near $1.39\hat{l}$ /4m: application to the in situ sensing of the middle atmosphere with balloonborne diode lasers. Journal of Quantitative Spectroscopy and Radiative Transfer, 2005, 94, 387-403.	2.3	33
48	Pressure broadening and shift coefficients of H2O due to perturbation by N2, O2, H2and He in the 1.39 μm region: experiment and calculations. Molecular Physics, 2004, 102, 1697-1706.	1.7	42
49	Diode laser spectroscopy of CO2 in the region for the in situ sensing of the middle atmosphere. Journal of Quantitative Spectroscopy and Radiative Transfer, 2004, 83, 619-628.	2.3	48
50	In situ sensing of atmospheric CO2 with laser diodes near 2.05 \hat{l} 4m: a spectroscopic study. Infrared Physics and Technology, 2004, 45, 229-237.	2.9	20
51	Diode laser spectroscopy of H2O in the 7165– range for atmospheric applications. Journal of Quantitative Spectroscopy and Radiative Transfer, 2002, 75, 493-505.	2.3	36
52	Title is missing!. Journal of Atmospheric Chemistry, 2002, 43, 175-194.	3.2	30