
## Shuang Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8615653/publications.pdf Version: 2024-02-01



SHUANG HANG

| #  | Article                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Chiral Ceramic Nanoparticles and Peptide Catalysis. Journal of the American Chemical Society, 2017, 139, 13701-13712.                                                                                                     | 6.6  | 110       |
| 2  | Enhanced Water Retention by Using Polymeric Microcapsules to Confer High Proton Conductivity on Membranes at Low Humidity. Advanced Functional Materials, 2011, 21, 971-978.                                              | 7.8  | 96        |
| 3  | Photocatalytic selective hydroxylation of phenol to dihydroxybenzene by BiOI/TiO2 p-n heterojunction photocatalysts for enhanced photocatalytic activity. Applied Surface Science, 2018, 439, 1047-1056.                  | 3.1  | 77        |
| 4  | An ingenious strategy of preparing TiO2/g-C3N4 heterojunction photocatalyst: In situ growth of TiO2 nanocrystals on g-C3N4 nanosheets via impregnation-calcination method. Applied Surface Science, 2018, 433, 963-974.   | 3.1  | 71        |
| 5  | Circular Polarized Light Emission in Chiral Inorganic Nanomaterials. Advanced Materials, 2023, 35, e2108431.                                                                                                              | 11.1 | 61        |
| 6  | Boosted electron-transfer by coupling Ag and Z-scheme heterostructures in CdSe-Ag-WO3-Ag for<br>excellent photocatalytic H2 evolution with simultaneous degradation. Chemical Engineering Journal,<br>2021, 417, 129298.  | 6.6  | 50        |
| 7  | Ferrocene particles incorporated into Zr-based metal–organic frameworks for selective phenol<br>hydroxylation to dihydroxybenzenes. RSC Advances, 2017, 7, 38691-38698.                                                   | 1.7  | 34        |
| 8  | Controllable synthesis of Ag/AgCl@MIL-88A <i>via in situ</i> growth method for<br>morphology-dependent photocatalytic performance. Journal of Materials Chemistry C, 2019, 7,<br>5451-5460.                               | 2.7  | 33        |
| 9  | Synthesis, characterization, electrochemical properties and catalytic reactivity of N-heterocyclic carbene-containing diiron complexes. RSC Advances, 2015, 5, 29022-29031.                                               | 1.7  | 31        |
| 10 | A new strategy to achieve enhanced upconverted circularly polarized luminescence in chiral perovskite nanocrystals. Nano Research, 2022, 15, 1047-1053.                                                                   | 5.8  | 31        |
| 11 | Synthesis and Characterization of Bio-Inspired Diiron Complexes and Their Catalytic Activity for<br>Direct Hydroxylation of Aromatic Compounds. European Journal of Inorganic Chemistry, 2015, 2015,<br>817-825.          | 1.0  | 30        |
| 12 | Ligand Exchange Strategy to Achieve Chiral Perovskite Nanocrystals with a High Photoluminescence<br>Quantum Yield and Regulation of the Chiroptical Property. ACS Applied Materials & Interfaces,<br>2022, 14, 3385-3394. | 4.0  | 25        |
| 13 | Water-mediated promotion of direct oxidation of benzene over the metal–organic framework<br>HKUST-1. RSC Advances, 2015, 5, 56020-56027.                                                                                  | 1.7  | 16        |
| 14 | Cu-Deficient plasmonic Cu <sub>2â^'x</sub> S nanocrystals induced tunable photocatalytic activities.<br>CrystEngComm, 2020, 22, 678-685.                                                                                  | 1.3  | 16        |
| 15 | Nitrogen heterocyclic carbene containing pentacoordinate iron dicarbonyl as a [Fe]-hydrogenase active site model. Dalton Transactions, 2015, 44, 16708-16712.                                                             | 1.6  | 15        |
| 16 | Polymorphism and molecular conformations of nicosulfuron: structure, properties and desolvation process. CrystEngComm, 2019, 21, 2790-2798.                                                                               | 1.3  | 15        |
| 17 | Efficient hydroxylation of aromatic compounds catalyzed by an iron(II) complex with<br>H <sub>2</sub> O <sub>2</sub> . Applied Organometallic Chemistry, 2014, 28, 666-672.                                               | 1.7  | 14        |
| 18 | Controllable self-assembly of BiOI/oxidized mesocarbon microbeads core-shell composites: A novel<br>hierarchical structure facilitated photocatalytic activities. Chemical Engineering Science, 2020, 221,<br>115653.     | 1.9  | 14        |

SHUANG JIANG

| #  | Article                                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Bacitracin-Controlled BiOI/Bi <sub>5</sub> O <sub>7</sub> I Nanosheet Assembly and S-Scheme<br>Heterojunction Formation for Enhanced Photocatalytic Performances. ACS Applied Nano Materials,<br>2022, 5, 6736-6749.                                   | 2.4 | 14        |
| 20 | Synthesis and properties of novel colorless and thermostable polyimides containing crossâ€linkable<br>bulky tetrafluorostyrol pendant group and organosoluble triphenylmethane backbone structure.<br>Journal of Polymer Science, 2020, 58, 2355-2365. | 2.0 | 13        |
| 21 | The influence of phosphine ligand substituted [2Fe2S] model complexes as electro-catalyst on proton reduction. RSC Advances, 2018, 8, 42262-42268.                                                                                                     | 1.7 | 12        |
| 22 | Chiroptical Activity of Type II Core/Shell Cu <sub>2</sub> S/CdSe Nanocrystals. Inorganic Chemistry, 2019, 58, 6534-6543.                                                                                                                              | 1.9 | 10        |
| 23 | Synergistic combination of carbon-black and graphene for 3D printable stretchable conductors.<br>Materials Technology, 2020, , 1-10.                                                                                                                   | 1.5 | 10        |
| 24 | Versatile solid forms of boscalid: insight into the crystal structures and phase transformations.<br>CrystEngComm, 2019, 21, 6838-6849.                                                                                                                | 1.3 | 8         |
| 25 | Bacitracin-assisted synthesis of spherical BiVO <sub>4</sub> nanoparticles with C doping for remarkable photocatalytic performance under visible light. CrystEngComm, 2020, 22, 1812-1821.                                                             | 1.3 | 8         |
| 26 | Synthesis, structural characterization, and chemical properties of pentacoordinate model complexes for the active site of [Fe]-hydrogenase. RSC Advances, 2016, 6, 84139-84148.                                                                        | 1.7 | 7         |
| 27 | Improved process for 2,3,5-trimethylhydroquinone manufacture: highly efficient catalytic<br>hydrogenation of 2,3,5-trimethylbenzoquinone. Research on Chemical Intermediates, 2015, 41, 663-677.                                                       | 1.3 | 5         |
| 28 | Catalytic Performance and Kinetics of the Precursor of [Fe]-Hydrogenase in the Reaction of Phenol<br>Hydroxylation in Aqueous Phase at Ambient Temperature. Catalysis Letters, 2020, 150, 1238-1243.                                                   | 1.4 | 5         |
| 29 | Chiral 3D CdSe Nanotetrapods. Inorganic Chemistry, 2020, 59, 14382-14388.                                                                                                                                                                              | 1.9 | 5         |
| 30 | Bio-inspired Catalyst: [(μ -(SCH(CH2 CH3 )CH2 S))Fe(CO)5 ]2 (μ,k1 ,k1 -DPPF) for Proton Reduction and<br>Phenol Hydroxylation. ChemistrySelect, 2017, 2, 9407-9411.                                                                                    | 0.7 | 4         |
| 31 | In situ construction of Bi5O7I/Bi4Ti3O12 heterostructure composites with plentiful phase interfaces<br>for the boosted selective oxidation of benzylic alcohols under visible light. Journal of Materials<br>Chemistry C, 0, , .                       | 2.7 | 4         |
| 32 | Impact of native achiral ligands on the chirality of enantiopure cysteine stabilized CdSe nanocrystals.<br>Journal of Materials Chemistry C, 2021, 9, 555-561.                                                                                         | 2.7 | 4         |
| 33 | Effect of the Terminal Ligands of [FeFe]â€Hydrogenase Model Complexes on Proton Reduction<br>Properties and Catalytic Hydroxylation of Benzene. ChemistrySelect, 2017, 2, 3306-3310.                                                                   | 0.7 | 3         |
| 34 | Enhanced photothermal behavior derived from controllable self-assembly of Cu <sub>1.94</sub> S<br>microstructures. Dalton Transactions, 2019, 48, 4495-4503.                                                                                           | 1.6 | 3         |
| 35 | Effect of α-substitute group on the chirality of monocarboxylic acid stabilized CdSe nanocrystals.<br>Nanotechnology, 2021, 32, 375701.                                                                                                                | 1.3 | 3         |
| 36 | Catalytic reduction of 1,4â€benzoquinone to hydroquinone via [FeFe]â€hydrogenase model complexes<br>under mild conditions. Journal of Chemical Technology and Biotechnology, 2020, 95, 1250-1257.                                                      | 1.6 | 2         |

SHUANG JIANG

| #  | Article                                                                                                                                                                                               | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | High selective hydroxylation of phenol catalyzed by PNP ligandâ€containing [FeFe]â€hydrogenase model complexes. Journal of Chemical Technology and Biotechnology, 2020, 95, 2180-2186.                | 1.6 | 2         |
| 38 | Controllable chiral behavior of typeâ€II core/shell quantum dots adjusted by shell thickness and coordinated ligands. Chirality, 2021, 33, 167-175.                                                   | 1.3 | 1         |
| 39 | Synthesis and electrochemical properties of [FeFe]-hydrogenase model complexes with<br>acid-functionalized or base-functionalized ligands. Journal of Applied Electrochemistry, 2017, 47,<br>583-591. | 1.5 | Ο         |
| 40 | The efficient catalytic oxidation of 2,3,6-trimethylphenol with air over composite catalyst to synthesize Vitamin E intermediate. Research on Chemical Intermediates, 2021, 47, 3705-3718.            | 1.3 | 0         |
| 41 | Diphosphine ligandâ€containing model complex of [Fe]â€H 2 ase active site as direct phenol hydroxylation catalyst in the aqueous phase. Journal of Chemical Technology and Biotechnology, 0, , .      | 1.6 | Ο         |
| 42 | Enhancement of filtration and dispersion properties of Pigment Yellow 14 via an in situ coating<br>strategy onto ethylene–vinyl acetate wax. Research on Chemical Intermediates, 0, , .               | 1.3 | 0         |