Ming-Hsien Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8615626/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Low-Temperature Sputtered Nickel Oxide Compact Thin Film as Effective Electron Blocking Layer for Mesoscopic NiO/CH ₃ NH ₃ Pbl ₃ Perovskite Heterojunction Solar Cells. ACS Applied Materials & Interfaces, 2014, 6, 11851-11858.	4.0	319
2	A Review of Inorganic Hole Transport Materials for Perovskite Solar Cells. Advanced Materials Interfaces, 2018, 5, 1800882.	1.9	200
3	Highly Efficient 2D/3D Hybrid Perovskite Solar Cells via Lowâ€Pressure Vaporâ€Assisted Solution Process. Advanced Materials, 2018, 30, e1801401.	11.1	154
4	Inorganic p-type contact materials for perovskite-based solar cells. Journal of Materials Chemistry A, 2015, 3, 9011-9019.	5.2	143
5	Leadâ€Free Double Perovskites for Perovskite Solar Cells. Solar Rrl, 2020, 4, 1900306.	3.1	127
6	Ultrafast Dynamics of Hole Injection and Recombination in Organometal Halide Perovskite Using Nickel Oxide as p-Type Contact Electrode. Journal of Physical Chemistry Letters, 2016, 7, 1096-1101.	2.1	97
7	Novel spiro-based hole transporting materials for efficient perovskite solar cells. Chemical Communications, 2015, 51, 15518-15521.	2.2	88
8	Zinc Porphyrin–Ethynylaniline Conjugates as Novel Hole-Transporting Materials for Perovskite Solar Cells with Power Conversion Efficiency of 16.6%. ACS Energy Letters, 2016, 1, 956-962.	8.8	87
9	Inorganic p-Type Semiconductors: Their Applications and Progress in Dye-Sensitized Solar Cells and Perovskite Solar Cells. Energies, 2016, 9, 331.	1.6	69
10	Mixed Cation Thiocyanate-Based Pseudohalide Perovskite Solar Cells with High Efficiency and Stability. ACS Applied Materials & amp; Interfaces, 2017, 9, 2403-2409.	4.0	57
11	Pseudoâ€Halide Perovskite Solar Cells. Advanced Energy Materials, 2021, 11, 2100818.	10.2	56
12	Lowâ€Pressure Hybrid Chemical Vapor Growth for Efficient Perovskite Solar Cells and Largeâ€Area Module. Advanced Materials Interfaces, 2016, 3, 1500849.	1.9	51
13	Highly stable perovskite solar cells with all-inorganic selective contacts from microwave-synthesized oxide nanoparticles. Journal of Materials Chemistry A, 2017, 5, 25485-25493.	5.2	41
14	Microwave-assisted synthesis of titanium dioxide nanocrystalline for efficient dye-sensitized and perovskite solar cells. Solar Energy, 2015, 120, 345-356.	2.9	37
15	Research Update: Hybrid organic-inorganic perovskite (HOIP) thin films and solar cells by vapor phase reaction. APL Materials, 2016, 4, .	2.2	33
16	Cu/Cu2O nanocomposite films as a p-type modified layer for efficient perovskite solar cells. Scientific Reports, 2018, 8, 7646.	1.6	33
17	Lowâ€Pressure Vaporâ€Assisted Solution Process for Thiocyanateâ€Based Pseudohalide Perovskite Solar Cells. ChemSusChem, 2016, 9, 2620-2627.	3.6	30
18	Robust and Recyclable Substrate Template with an Ultrathin Nanoporous Counter Electrode for Organic-Hole-Conductor-Free Monolithic Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 41845-41854.	4.0	19

Ming-Hsien Li

#	Article	IF	CITATIONS
19	Improve Hole Collection by Interfacial Chemical Redox Reaction at a Mesoscopic NiO/CH ₃ NH ₃ PbI ₃ Heterojunction for Efficient Photovoltaic Cells. Advanced Materials Interfaces, 2016, 3, 1600135.	1.9	18
20	The Cu/Cu ₂ O nanocomposite as a p-type transparent-conductive-oxide for efficient bifacial-illuminated perovskite solar cells. Journal of Materials Chemistry C, 2018, 6, 6280-6286.	2.7	16
21	High-performance solution-processed ZnSnO metal–semiconductor–metal ultraviolet photodetectors via ultraviolet/ozone photo-annealing. Semiconductor Science and Technology, 2021, 36, 095013.	1.0	16
22	Segregation-free bromine-doped perovskite solar cells for IoT applications. RSC Advances, 2019, 9, 32833-32838.	1.7	13
23	A novel porous Ti/TiN/Ti thin film as a working electrode for back-contact, monolithic and non-TCO dye-sensitized solar cells. Sustainable Energy and Fuels, 2017, 1, 851-858.	2.5	4
24	Effect of the Large-Size A-Site Cation on the Crystal Growth and Phase Distribution of 2D/3D Mixed Perovskite Films via a Low-Pressure Vapor-Assisted Solution Process. Journal of Physical Chemistry C, 0, , .	1.5	4
25	Optical manipulation of nematic colloids at the interfaces in azo-dye-doped liquid crystals. Applied Optics, 2018, 57, 3180.	0.9	2
26	Multiple-Color Reflectors Using Bichiral Liquid Crystal Polymer Films and Their Applications in Liquid Crystal Displays. Polymers, 2020, 12, 3031.	2.0	2
27	Back-contact perovskite solar cells. Semiconductor Science and Technology, 2021, 36, 083001.	1.0	2
28	Formamide iodide: a new cation additive for inhibiting δ-phase formation of formamidinium lead iodide perovskite. Materials Advances, 2021, 2, 2272-2277.	2.6	2
29	Observation of strain-induced phonon mode splitting in the tetragonal hybrid halide perovskite. Japanese Journal of Applied Physics, 2017, 56, 110307.	0.8	1
30	P-Type and Inorganic Hole Transporting Materials for Perovskite Solar Cells. Series on Chemistry, Energy and the Environment, 2017, , 63-109.	0.3	1
31	Effects of CF4 Plasma Treatment on Indium Gallium Oxide and Ti-doped Indium Gallium Oxide Sensing Membranes in Electrolyte–Insulator–Semiconductors. Crystals, 2020, 10, 810.	1.0	1
32	Comparison of NH3 and N2O Plasma Treatments on Bi2O3 Sensing Membranes Applied in an Electrolyte–Insulator–Semiconductor Structure. Membranes, 2022, 12, 188.	1.4	1
33	Low-pressure hybrid chemical vapor deposition for efficient perovskite solar cells and module. , 2016, , .		0
34	Mapping Highly Efficient Mixed-cation Pseudohalide-perovskite Solar Cells with a Scanning Transmission X-ray Microscope. Microscopy and Microanalysis, 2018, 24, 462-463.	0.2	0
35	Optically Controllable Gray-Level Diffraction from a BCT Photonic Crystal Based on Azo Dye-Doped HPDLC. Optics and Photonics Journal, 2014, 04, 288-295.	0.3	0

Functional inorganic selective contact layers for perovskite solar cell application. , 0, , .

0

#	Article	IF	CITATIONS
37	Formation of liquid crystal gratings with crystal/quasicrystal patterns through photoalignment. Liquid Crystals, 0, , 1-8.	0.9	0