
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8615616/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sensing nitrite by iron-nitrogen-carbon oxygen reduction electrocatalyst. Electrochimica Acta, 2022, 402, 139514.	2.6	7
2	Investigation of cathode catalyst layer interfaces evolution during accelerated stress tests for polymer electrolyte fuel cells. Applied Catalysis B: Environmental, 2022, 301, 120810.	10.8	24
3	Catalysts by pyrolysis: Direct observation of transformations during re-pyrolysis of transition metal-nitrogen-carbon materials leading to state-of-the-art platinum group metal-free electrocatalyst. Materials Today, 2022, 53, 58-70.	8.3	23
4	Nitrogen and Phosphorus Dual-Doped Silicon Carbide-Derived Carbon/Carbon Nanotube Composite for the Anion-Exchange Membrane Fuel Cell Cathode. ACS Applied Energy Materials, 2022, 5, 2949-2958.	2.5	21
5	Highly Durable and Selective Fe- and Mo-Based Atomically Dispersed Electrocatalysts for Nitrate Reduction to Ammonia via Distinct and Synergized NO ₂ [–] Pathways. ACS Catalysis, 2022, 12, 6651-6662.	5.5	58
6	Steering Cu-Based CO ₂ RR Electrocatalysts' Selectivity: Effect of Hydroxyapatite Acid/Base Moieties in Promoting Formate Production. ACS Energy Letters, 2022, 7, 2304-2310.	8.8	17
7	Oxygen reduction reaction electrocatalysis in neutral media for bioelectrochemical systems. Nature Catalysis, 2022, 5, 473-484.	16.1	53
8	Robust palladium hydride catalyst for electrocatalytic formate formation with high CO tolerance. Applied Catalysis B: Environmental, 2022, 316, 121659.	10.8	11
9	Iron(II) phthalocyanine (FePc) over carbon support for oxygen reduction reaction electrocatalysts operating in alkaline electrolyte. Journal of Solid State Electrochemistry, 2021, 25, 93-104.	1.2	29
10	Hidden in plain sight: unlocking the full potential of cyclic voltammetry with the thin-film rotating (ring) disk electrode studies for the investigation of oxygen reduction reaction electrocatalysts. Current Opinion in Electrochemistry, 2021, 25, 100626.	2.5	10
11	Identification of durable and non-durable FeNx sites in Fe–N–C materials for proton exchange membrane fuel cells. Nature Catalysis, 2021, 4, 10-19.	16.1	368
12	Fe–N–C Electrocatalysts' Durability: Effects of Single Atoms' Mobility and Clustering. ACS Catalysis, 2021, 11, 484-494.	5.5	53
13	Ni(OH)2-free NiCu as a hydrogen evolution and oxidation electrocatalyst. Electrochemistry Communications, 2021, 125, 106999.	2.3	9
14	Catalytic Hybrid Electrocatalytic/Biocatalytic Cascades for Carbon Dioxide Reduction and Valorization. ACS Catalysis, 2021, 11, 5172-5188.	5.5	31
15	Practical demonstration of applicability and efficiency of platinum group metal-free based catalysts in microbial fuel cells for wastewater treatment. Journal of Power Sources, 2021, 491, 229582.	4.0	9
16	How Comparable are Microbial Electrochemical Systems around the Globe? An Electrochemical and Microbiological Cross‣aboratory Study. ChemSusChem, 2021, 14, 2267.	3.6	2
17	Transition Metal Chalcogenides as a Versatile and Tunable Platform for Catalytic CO ₂ and N ₂ Electroreduction. ACS Materials Au, 2021, 1, 6-36.	2.6	55
18	How Comparable are Microbial Electrochemical Systems around the Globe? An Electrochemical and Microbiological Cross‣aboratory Study. ChemSusChem, 2021, 14, 2313-2330.	3.6	13

#	Article	IF	CITATIONS
19	Aluminum-air batteries: A review of alloys, electrolytes and design. Journal of Power Sources, 2021, 498, 229762.	4.0	74
20	Mapping transition metal-MN4 macrocyclic complex catalysts performance for the critical reactivity descriptors. Current Opinion in Electrochemistry, 2021, 27, 100683.	2.5	36
21	Protocol for rapid ammonia detection via surface-enhanced Raman spectroscopy. STAR Protocols, 2021, 2, 100599.	0.5	0
22	Mapping transition metal–nitrogen–carbon catalystÂperformance on the critical descriptorÂdiagram. Current Opinion in Electrochemistry, 2021, 27, 100687.	2.5	34
23	Self-Anchored Platinum-Decorated Antimony-Doped-Tin Oxide as a Durable Oxygen Reduction Electrocatalyst. ACS Catalysis, 2021, 11, 7006-7017.	5.5	17
24	Catalysts by pyrolysis: Direct observation of chemical and morphological transformations leading to transition metal-nitrogen-carbon materials. Materials Today, 2021, 47, 53-68.	8.3	30
25	Probing Heterogeneous Degradation of Catalyst in PEM Fuel Cells under Realistic Automotive Conditions with Multiâ€Modal Techniques. Advanced Energy Materials, 2021, 11, 2101794.	10.2	25
26	Metal Oxide Clusters on Nitrogen-Doped Carbon are Highly Selective for CO ₂ Electroreduction to CO. ACS Catalysis, 2021, 11, 10028-10042.	5.5	37
27	Platinum group metal-free Fe-based (Fe N C) oxygen reduction electrocatalysts for direct alcohol fuel cells. Current Opinion in Electrochemistry, 2021, 29, 100756.	2.5	17
28	Graphene-based catalyst for CO2 reduction: The critical role of solvents in materials design. Journal of Catalysis, 2021, 404, 512-517.	3.1	6
29	From Hydrogen Manifesto, through Green Deal and Just Transition, to Clean Energy Act. Electrochemical Society Interface, 2021, 30, 57-60.	0.3	7
30	Charge transfer at biotic/abiotic interfaces in biological electrocatalysis. Current Opinion in Electrochemistry, 2020, 19, 175-183.	2.5	12
31	Iron-Nitrogen-Carbon Catalysts for Proton Exchange Membrane Fuel Cells. Joule, 2020, 4, 33-44.	11.7	264
32	Integrating nanostructured Pt-based electrocatalysts in proton exchange membrane fuel cells. Journal of Power Sources, 2020, 478, 228516.	4.0	44
33	Towards defect engineering in hexagonal MoS2 nanosheets for tuning hydrogen evolution and nitrogen reduction reactions. Applied Materials Today, 2020, 21, 100812.	2.3	16
34	Graphite Intercalation Compounds Derived by Green Chemistry as Oxygen Reduction Reaction Catalysts. ACS Applied Materials & Interfaces, 2020, 12, 42678-42685.	4.0	18
35	Facile All-Optical Method for In Situ Detection of Low Amounts of Ammonia. IScience, 2020, 23, 101757.	1.9	12
36	Cathode Catalysts Based on Cobalt- and Nitrogen-Doped Nanocarbon Composites for Anion Exchange Membrane Fuel Cells. ACS Applied Energy Materials, 2020, 3, 5375-5384.	2.5	61

#	Article	IF	CITATIONS
37	Establishing reactivity descriptors for platinum group metal (PGM)-free Fe–N–C catalysts for PEM fuel cells. Energy and Environmental Science, 2020, 13, 2480-2500.	15.6	205
38	Mapping of Heterogeneous Catalyst Degradation in Polymer Electrolyte Fuel Cells. Advanced Energy Materials, 2020, 10, 2000623.	10.2	24
39	Kinetic Isotope Effect as a Tool To Investigate the Oxygen Reduction Reaction on Ptâ€based Electrocatalysts – Part I: Highâ€loading Pt/C and Pt Extended Surface. ChemPhysChem, 2020, 21, 468-468.	1.0	2
40	Platinum group metal-free oxygen reduction electrocatalysts used in neutral electrolytes for bioelectrochemical reactor applications. Current Opinion in Electrochemistry, 2020, 23, 106-113.	2.5	24
41	Effect of Active Site Poisoning on Ironâ Nitrogenâ Carbon Platinumâ€Groupâ€Metalâ€Free Oxygen Reduction Reaction Catalysts Operating in Neutral Media: A Rotating Disk Electrode Study. ChemElectroChem, 2020, 7, 3044-3055.	1.7	19
42	Characterizing Complex Gas–Solid Interfaces with in Situ Spectroscopy: Oxygen Adsorption Behavior on Fe–N—C Catalysts. Journal of Physical Chemistry C, 2020, 124, 16529-16543.	1.5	20
43	Kinetic Isotope Effect as a Tool To Investigate the Oxygen Reduction Reaction on Ptâ€based Electrocatalysts – Part I: Highâ€loading Pt/C and Pt Extended Surface. ChemPhysChem, 2020, 21, 469-475.	1.0	19
44	Metal–Nitrogen–Carbon Electrocatalysts for CO ₂ Reduction towards Syngas Generation. ChemSusChem, 2020, 13, 1688-1698.	3.6	36
45	Kinetic Isotope Effect as a Tool To Investigate the Oxygen Reduction Reaction on Ptâ€based Electrocatalysts – Part II: Effect of Platinum Dispersion. ChemPhysChem, 2020, 21, 1331-1339.	1.0	4
46	Spectroâ€Electrochemical Microfluidic Platform for Monitoring Multiâ€Step Cascade Reactions. ChemElectroChem, 2019, 6, 246-251.	1.7	10
47	Enhancement of Electrocatalytic Oxidation of Glycerol by Plasmonics. ChemElectroChem, 2019, 6, 241-245.	1.7	23
48	Multiâ€functional microbial fuel cells for power, treatment and electroâ€osmotic purification of urine. Journal of Chemical Technology and Biotechnology, 2019, 94, 2098-2106.	1.6	21
49	Understanding the Oxygen Reduction Reaction Activity and Oxidative Stability of Pt Supported on Nbâ€Doped TiO 2. ChemSusChem, 2019, 12, 3409-3409.	3.6	0
50	Correlations between Synthesis and Performance of Fe-Based PGM-Free Catalysts in Acidic and Alkaline Media: Evolution of Surface Chemistry and Morphology. ACS Applied Energy Materials, 2019, 2, 5406-5418.	2.5	44
51	Investigating the Nature of the Active Sites for the CO ₂ Reduction Reaction on Carbon-Based Electrocatalysts. ACS Catalysis, 2019, 9, 7668-7678.	5.5	58
52	Impedance Spectroscopy Characterization of PEM Fuel Cells with Fe-N-C-Based Cathodes. Journal of the Electrochemical Society, 2019, 166, F653-F660.	1.3	11
53	Understanding Active Sites in Pyrolyzed Fe–N–C Catalysts for Fuel Cell Cathodes by Bridging Density Functional Theory Calculations and ⁵⁷ Fe Mössbauer Spectroscopy. ACS Catalysis, 2019, 9, 9359-9371.	5.5	167
54	Volcano Trend in Electrocatalytic CO ₂ Reduction Activity over Atomically Dispersed Metal Sites on Nitrogen-Doped Carbon. ACS Catalysis, 2019, 9, 10426-10439.	5.5	142

#	Article	IF	CITATIONS
55	Nitrogen-Doped Graphene Oxide Electrocatalysts for the Oxygen Reduction Reaction. ACS Applied Nano Materials, 2019, 2, 1675-1682.	2.4	69
56	Bioelectrochemistry–An Electrifying Experience Over 70â€Years. ChemElectroChem, 2019, 6, 5356-5357.	1.7	0
57	Morphological Attributes Govern Carbon Dioxide Reduction on N-Doped Carbon Electrodes. Joule, 2019, 3, 1719-1733.	11.7	132
58	Understanding the Role of Interfaces for Water Management in Platinum Group Metal-Free Electrodes in Polymer Electrolyte Fuel Cells. ACS Applied Energy Materials, 2019, 2, 3542-3553.	2.5	31
59	Modular Microfluidic Paperâ€Based Devices for Multiâ€Modal Cascade Catalysis. ChemElectroChem, 2019, 6, 2448-2455.	1.7	8
60	Kinetic Isotopic Effect Studies of Iron–Nitrogen–Carbon Electrocatalysts for Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2019, 123, 11476-11483.	1.5	12
61	Understanding the Oxygen Reduction Reaction Activity and Oxidative Stability of Pt Supported on Nbâ€Doped TiO ₂ . ChemSusChem, 2019, 12, 3468-3480.	3.6	39
62	Iron-streptomycin derived catalyst for efficient oxygen reduction reaction in ceramic microbial fuel cells operating with urine. Journal of Power Sources, 2019, 425, 50-59.	4.0	29
63	Analysis of the effect of catalyst layer thickness on the performance and durability of platinum group metal-free catalysts for polymer electrolyte membrane fuel cells. Sustainable Energy and Fuels, 2019, 3, 3375-3386.	2.5	28
64	Increased power generation in supercapacitive microbial fuel cell stack using Fe N C cathode catalyst. Journal of Power Sources, 2019, 412, 416-424.	4.0	42
65	Ceramic Microbial Fuel Cells Stack: power generation in standard and supercapacitive mode. Scientific Reports, 2018, 8, 3281.	1.6	55
66	Design of Pd-Pb Catalysts for Glycerol and Ethylene Glycol Electrooxidation in Alkaline Medium. Electrocatalysis, 2018, 9, 480-485.	1.5	20
67	Effect of pH on the Activity of Platinum Group Metal-Free Catalysts in Oxygen Reduction Reaction. ACS Catalysis, 2018, 8, 3041-3053.	5.5	158
68	Inhibition of Surface Chemical Moieties by Tris(hydroxymethyl)aminomethane: A Key to Understanding Oxygen Reduction on Iron–Nitrogen–Carbon Catalysts. ACS Applied Energy Materials, 2018, 1, 1942-1949.	2.5	18
69	Enhancement of microbial fuel cell performance by introducing a nano-composite cathode catalyst. Electrochimica Acta, 2018, 265, 56-64.	2.6	79
70	Microbial desalination cell with sulfonated sodium poly(ether ether ketone) as cation exchange membranes for enhancing power generation and salt reduction. Bioelectrochemistry, 2018, 121, 176-184.	2.4	31
71	Power generation in microbial fuel cells using platinum group metal-free cathode catalyst: Effect of the catalyst loading on performance and costs. Journal of Power Sources, 2018, 378, 169-175.	4.0	85
72	Role of Surface Chemistry on Catalyst/Ionomer Interactions for Transition Metal–Nitrogen–Carbon Electrocatalysts. ACS Applied Energy Materials, 2018, 1, 68-77.	2.5	44

#	Article	IF	CITATIONS
73	Iron-Nicarbazin derived platinum group metal-free electrocatalyst in scalable-size air-breathing cathodes for microbial fuel cells. Electrochimica Acta, 2018, 277, 127-135.	2.6	27
74	Nanostructured metal-N-C electrocatalysts for CO2 reduction and hydrogen evolution reactions. Applied Catalysis B: Environmental, 2018, 232, 512-520.	10.8	48
75	Understanding PGM-free catalysts by linking density functional theory calculations and structural analysis: Perspectives and challenges. Current Opinion in Electrochemistry, 2018, 9, 137-144.	2.5	85
76	Role of Nitrogen Moieties in N-Doped 3D-Graphene Nanosheets for Oxygen Electroreduction in Acidic and Alkaline Media. ACS Applied Materials & amp; Interfaces, 2018, 10, 11623-11632.	4.0	104
77	Highly durable direct hydrazine hydrate anion exchange membrane fuel cell. Journal of Power Sources, 2018, 375, 291-299.	4.0	26
78	3D-Graphene supports for palladium nanoparticles: Effect of micro/macropores on oxygen electroreduction in Anion Exchange Membrane Fuel Cells. Journal of Power Sources, 2018, 375, 255-264.	4.0	30
79	Nano-structured platinum group metal-free catalysts and their integration in fuel cell electrode architectures. Applied Catalysis B: Environmental, 2018, 237, 1139-1147.	10.8	61
80	Improved power and long term performance of microbial fuel cell with Fe-N-C catalyst in air-breathing cathode. Energy, 2018, 144, 1073-1079.	4.5	71
81	Investigation of patterned and non-patterned poly(2,6-dimethyl 1,4-phenylene) oxide based anion exchange membranes for enhanced desalination and power generation in a microbial desalination cell. Solid State Ionics, 2018, 314, 141-148.	1.3	30
82	Influence of platinum group metal-free catalyst synthesis on microbial fuel cell performance. Journal of Power Sources, 2018, 375, 11-20.	4.0	62
83	Porous Hollow PtNi/C Electrocatalysts: Carbon Support Considerations To Meet Performance and Stability Requirements. ACS Catalysis, 2018, 8, 893-903.	5.5	67
84	Hydrothermal Synthesis of Platinumâ€Groupâ€Metalâ€Free Catalysts: Structural Elucidation and Oxygen Reduction Catalysis. ChemElectroChem, 2018, 5, 1848-1853.	1.7	8
85	Synthesis and characterization of high performing Fe-N-C catalyst for oxygen reduction reaction (ORR) in Alkaline Exchange Membrane Fuel Cells. Journal of Power Sources, 2018, 375, 214-221.	4.0	206
86	Structure of Active Sites of Fe-N-C Nano-Catalysts for Alkaline Exchange Membrane Fuel Cells. Nanomaterials, 2018, 8, 965.	1.9	13
87	Oxygen Reduction Reaction Electrocatalysts Derived from Iron Salt and Benzimidazole and Aminobenzimidazole Precursors and Their Application in Microbial Fuel Cell Cathodes. ACS Applied Energy Materials, 2018, 1, 5755-5765.	2.5	29
88	Mechanism of Oxygen Reduction Reaction on Transition Metal–Nitrogen–Carbon Catalysts: Establishing the Role of Nitrogen-containing Active Sites. ACS Applied Energy Materials, 2018, 1, 5948-5953.	2.5	54
89	Direct observations of liquid water formation at nano- and micro-scale in platinum group metal-free electrodes by operando X-ray computed tomography. Materials Today Energy, 2018, 9, 187-197.	2.5	55
90	Implementing PGM-free electrocatalysts in high-temperature polymer electrolyte membrane fuel cells. Electrochemistry Communications, 2018, 93, 91-94.	2.3	24

#	Article	IF	CITATIONS
91	Fuel Cells: A Call for Total Design. Joule, 2018, 2, 1210-1211.	11.7	4
92	Nickel–copper supported on a carbon black hydrogen oxidation catalyst integrated into an anion-exchange membrane fuel cell. Sustainable Energy and Fuels, 2018, 2, 2268-2275.	2.5	102
93	Fully Synthetic Approach toward Transition Metal–Nitrogen–Carbon Oxygen Reduction Electrocatalysts. ACS Applied Energy Materials, 2018, 1, 3802-3806.	2.5	9
94	Cascade Kinetics of an Artificial Metabolon by Molecular Dynamics and Kinetic Monte Carlo. ACS Catalysis, 2018, 8, 7719-7726.	5.5	13
95	Resolving Challenges of Mass Transport in Non Pt-Group Metal Catalysts for Oxygen Reduction in Proton Exchange Membrane Fuel Cells. Journal of the Electrochemical Society, 2018, 165, F589-F596.	1.3	12
96	Oxygen Binding to Active Sites of Fe–N–C ORR Electrocatalysts Observed by Ambient-Pressure XPS. Journal of Physical Chemistry C, 2017, 121, 2836-2843.	1.5	135
97	Integration of Platinum Group Metalâ€Free Catalysts and Bilirubin Oxidase into a Hybrid Material for Oxygen Reduction: Interplay of Chemistry and Morphology. ChemSusChem, 2017, 10, 1534-1542.	3.6	8
98	NiO/Nb ₂ O ₅ /C Hydrazine Electrooxidation Catalysts for Anion Exchange Membrane Fuel Cells. Journal of the Electrochemical Society, 2017, 164, F229-F234.	1.3	13
99	Insights on the extraordinary tolerance to alcohols of Fe-N-C cathode catalysts in highly performing direct alcohol fuel cells. Nano Energy, 2017, 34, 195-204.	8.2	113
100	Platinum group metal-free electrocatalysts: Effects of synthesis on structure and performance in proton-exchange membrane fuel cell cathodes. Journal of Power Sources, 2017, 348, 30-39.	4.0	60
101	Air Breathing Cathodes for Microbial Fuel Cell using Mn-, Fe-, Co- and Ni-containing Platinum Group Metal-free Catalysts. Electrochimica Acta, 2017, 231, 115-124.	2.6	131
102	Three-dimensional graphene nanosheets as cathode catalysts in standard and supercapacitive microbial fuel cell. Journal of Power Sources, 2017, 356, 371-380.	4.0	108
103	Novel Hybrid Catalyst for the Oxidation of Organic Acids: Pd Nanoparticles Supported on Mnâ€Nâ€3Dâ€Graphene Nanosheets. ChemElectroChem, 2017, 4, 2336-2344.	1.7	5
104	Improving the Performance of Methanol Biofuel Cells Utilizing an Enzyme Cascade Bioanode with DNA-Bridged Substrate Channeling. ACS Energy Letters, 2017, 2, 1435-1438.	8.8	28
105	Nickel-based electrocatalysts for ammonia borane oxidation: enabling materials for carbon-free-fuel direct liquid alkaline fuel cell technology. Nano Energy, 2017, 37, 248-259.	8.2	44
106	Design of Iron(II) Phthalocyanineâ€Derived Oxygen Reduction Electrocatalysts for Highâ€Powerâ€Density Microbial Fuel Cells. ChemSusChem, 2017, 10, 3243-3251.	3.6	67
107	Fe–N–C Catalyst Graphitic Layer Structure and Fuel Cell Performance. ACS Energy Letters, 2017, 2, 1489-1493.	8.8	104
108	Novel highly active and selective Fe-N-C oxygen reduction electrocatalysts derived from in-situ polymerization pyrolysis. Nano Energy, 2017, 38, 201-209.	8.2	84

#	Article	IF	CITATIONS
109	Outer membrane cytochromes/flavin interactions in <i>Shewanella</i> spp.—A molecular perspective. Biointerphases, 2017, 12, 021004.	0.6	24
110	Preface—JES Focus Issue on Biological Fuel Cells. Journal of the Electrochemical Society, 2017, 164, Y3-Y4.	1.3	0
111	Stability of carbon-supported palladium nanoparticles in alkaline media: A case study of graphitized and more amorphous supports. Electrochemistry Communications, 2017, 78, 33-37.	2.3	24
112	Hybrid molecular/enzymatic catalytic cascade for complete electro-oxidation of glycerol using a promiscuous NAD-dependent formate dehydrogenase from Candida boidinii. Chemical Communications, 2017, 53, 5368-5371.	2.2	23
113	Selective CO 2 electroreduction to C 2 H 4 on porous Cu films synthesized by sacrificial support method. Journal of CO2 Utilization, 2017, 19, 137-145.	3.3	29
114	High Performance Platinum Group Metal-Free Cathode Catalysts for Microbial Fuel Cell (MFC). Journal of the Electrochemical Society, 2017, 164, H3041-H3046.	1.3	45
115	A family of Fe-N-C oxygen reduction electrocatalysts for microbial fuel cell (MFC) application: Relationships between surface chemistry and performances. Applied Catalysis B: Environmental, 2017, 205, 24-33.	10.8	135
116	Transition metal-nitrogen-carbon catalysts for oxygen reduction reaction in neutral electrolyte. Electrochemistry Communications, 2017, 75, 38-42.	2.3	97
117	Novel dual templating approach for preparation of highly active Fe-N-C electrocatalyst for oxygen reduction. Electrochimica Acta, 2017, 224, 49-55.	2.6	60
118	Supercapacitive microbial desalination cells: New class of power generating devices for reduction of salinity content. Applied Energy, 2017, 208, 25-36.	5.1	43
119	Microbial Desalination Cells with Efficient Platinumâ€Groupâ€Metalâ€Free Cathode Catalysts. ChemElectroChem, 2017, 4, 3322-3330.	1.7	40
120	Bimetallic platinum group metal-free catalysts for high power generating microbial fuel cells. Journal of Power Sources, 2017, 366, 18-26.	4.0	62
121	Nitrogen-Doped Three-Dimensional Graphene-Supported Palladium Nanocomposites: High-Performance Cathode Catalysts for Oxygen Reduction Reactions. ACS Catalysis, 2017, 7, 6609-6618.	5.5	43
122	Platinum group metal-free NiMo hydrogen oxidation catalysts: high performance and durability in alkaline exchange membrane fuel cells. Journal of Materials Chemistry A, 2017, 5, 24433-24443.	5.2	161
123	Selective Aerobic Oxidation of Alcohols over Atomicallyâ€Dispersed Nonâ€Precious Metal Catalysts. ChemSusChem, 2017, 10, 359-362.	3.6	79
124	Carbon-Based Air-Breathing Cathodes for Microbial Fuel Cells. Catalysts, 2016, 6, 127.	1.6	58
125	PGM-free Fe-N-C catalysts for oxygen reduction reaction: Catalyst layer design. Journal of Power Sources, 2016, 326, 43-49.	4.0	79
126	Supercapacitive microbial fuel cell: Characterization and analysis for improved charge storage/delivery performance. Bioresource Technology, 2016, 218, 552-560.	4.8	67

#	Article	IF	CITATIONS
127	Designed protein aggregates entrapping carbon nanotubes for bioelectrochemical oxygen reduction. Biotechnology and Bioengineering, 2016, 113, 2321-2327.	1.7	8
128	Self-feeding paper based biofuel cell/self-powered hybrid μ-supercapacitor integrated system. Biosensors and Bioelectronics, 2016, 86, 459-465.	5.3	59
129	Anodic biofilms as the interphase for electroactive bacterial growth on carbon veil. Biointerphases, 2016, 11, 031013.	0.6	16
130	Evaluation of Pt Alloys as Electrocatalysts for Oxalic Acid Oxidation: A Combined Experimental and Computational Study. Journal of the Electrochemical Society, 2016, 163, H787-H795.	1.3	4
131	Fe-carbon nitride "Core-shell―electrocatalysts for the oxygen reduction reaction. Electrochimica Acta, 2016, 222, 1778-1791.	2.6	60
132	Promotion of Ammonia Electrooxidation on Pt nanoparticles by Nickel Oxide Support. Electrochimica Acta, 2016, 222, 1455-1463.	2.6	19
133	Core Level Shifts of Hydrogenated Pyridinic and Pyrrolic Nitrogen in the Nitrogen-Containing Graphene-Based Electrocatalysts: In-Plane vs Edge Defects. Journal of Physical Chemistry C, 2016, 120, 29225-29232.	1.5	123
134	Morphological Characterization of ALD and Doping Effects on Mesoporous SnO ₂ Aerogels by XPS and Quantitative SEM Image Analysis. ACS Applied Materials & Interfaces, 2016, 8, 9849-9854.	4.0	6
135	Spectroscopic insights into the nature of active sites in iron–nitrogen–carbon electrocatalysts for oxygen reduction in acid. Nano Energy, 2016, 29, 65-82.	8.2	269
136	Design of Novel Graphene Materials as a Support for Palladium Nanoparticles: Highly Active Catalysts towards Ethanol Electrooxidation. Electrochimica Acta, 2016, 203, 144-153.	2.6	40
137	Miniaturized supercapacitors: key materials and structures towards autonomous and sustainable devices and systems. Journal of Power Sources, 2016, 326, 717-725.	4.0	82
138	Iron based catalysts from novel low-cost organic precursors for enhanced oxygen reduction reaction in neutral media microbial fuel cells. Energy and Environmental Science, 2016, 9, 2346-2353.	15.6	147
139	Gold nanocluster formation using morpholino oligomer as template and assembly agent within hybrid bio-nanomaterials. RSC Advances, 2016, 6, 90624-90630.	1.7	4
140	Mechanism Study of Hydrazine Electrooxidation Reaction on Nickel Oxide Surface in Alkaline Electrolyte by In Situ XAFS. Journal of the Electrochemical Society, 2016, 163, H951-H957.	1.3	34
141	Highly stable precious metal-free cathode catalyst for fuel cell application. Journal of Power Sources, 2016, 327, 557-564.	4.0	76
142	High Performance and Costâ€Effective Direct Methanol Fuel Cells: Feâ€Nâ€C Methanolâ€Tolerant Oxygen Reduction Reaction Catalysts. ChemSusChem, 2016, 9, 1986-1995.	3.6	100
143	Highly active and selective nickel molybdenum catalysts for direct hydrazine fuel cell. Electrochimica Acta, 2016, 215, 420-426.	2.6	59
144	Direct synthesis of platinum group metal-free Fe-N-C catalyst for oxygen reduction reaction in alkaline media. Electrochemistry Communications, 2016, 72, 140-143.	2.3	60

#	Article	IF	CITATIONS
145	Palladium Nanoparticles Supported on Threeâ€Dimensional Graphene Nanosheets: Superior Cathode Electrocatalysts. ChemElectroChem, 2016, 3, 1655-1666.	1.7	16
146	Co-generation of hydrogen and power/current pulses from supercapacitive MFCs using novel HER iron-based catalysts. Electrochimica Acta, 2016, 220, 672-682.	2.6	31
147	Critical role of intercalated water for electrocatalytically active nitrogen-doped graphitic systems. Science Advances, 2016, 2, e1501178.	4.7	36
148	Conjugated gold nanoparticles as a tool for probing the bacterial cell envelope: The case of <i>Shewanella oneidensis</i> MR-1. Biointerphases, 2016, 11, 011003.	0.6	23
149	Performance, methanol tolerance and stability of Fe-aminobenzimidazole derived catalyst for direct methanol fuel cells. Journal of Power Sources, 2016, 319, 235-246.	4.0	83
150	Protein–Support Interactions for Rationally Designed Bilirubin Oxidase Based Cathode: A Computational Study. Journal of Physical Chemistry B, 2016, 120, 3634-3641.	1.2	24
151	Tolerance of non-platinum group metals cathodes proton exchange membrane fuel cells to air contaminants. Journal of Power Sources, 2016, 324, 556-571.	4.0	34
152	Functional interfaces for biomimetic energy harvesting: CNTs-DNA matrix for enzyme assembly. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, 612-620.	0.5	5
153	Self-powered supercapacitive microbial fuel cell: The ultimate way of boosting and harvesting power. Biosensors and Bioelectronics, 2016, 78, 229-235.	5.3	112
154	Highly-active Pd–Cu electrocatalysts for oxidation of ubiquitous oxygenated fuels. Applied Catalysis B: Environmental, 2016, 191, 76-85.	10.8	61
155	Substrate channelling as an approach to cascade reactions. Nature Chemistry, 2016, 8, 299-309.	6.6	514
156	Hybrid electrocatalysts for oxygen reduction reaction: Integrating enzymatic and non-platinum group metal catalysis. Electrochimica Acta, 2016, 190, 504-510.	2.6	12
157	Bilirubin oxidase based enzymatic air-breathing cathode: Operation under pristine and contaminated conditions. Bioelectrochemistry, 2016, 108, 1-7.	2.4	50
158	Performance analysis of a non-platinum group metal catalyst based on iron-aminoantipyrine for direct methanol fuel cells. Applied Catalysis B: Environmental, 2016, 182, 297-305.	10.8	113
159	Novel Fe-N-C Catalysts from Organic Precursors for Neutral Media and Microbial Fuel Cell Application. ECS Meeting Abstracts, 2016, , .	0.0	1
160	High catalytic activity and pollutants resistivity using Fe-AAPyr cathode catalyst for microbial fuel cell application. Scientific Reports, 2015, 5, 16596.	1.6	82
161	Three-dimensional X-ray microcomputed tomography of carbonates and biofilm on operated cathode in single chamber microbial fuel cell. Biointerphases, 2015, 10, 031009.	0.6	62
162	Facile synthesis of high surface area molybdenum nitride and carbide. Journal of Solid State Chemistry, 2015, 228, 232-238.	1.4	18

#	Article	IF	CITATIONS
163	Nano-structured Pd-Sn catalysts for alcohol electro-oxidation in alkaline medium. Electrochemistry Communications, 2015, 57, 48-51.	2.3	61
164	Role of Quinones in Electron Transfer of PQQ–Glucose Dehydrogenase Anodes—Mediation or Orientation Effect. Journal of the American Chemical Society, 2015, 137, 7754-7762.	6.6	34
165	Surface modifications for enhanced enzyme immobilization and improved electron transfer of PQQ-dependent glucose dehydrogenase anodes. Bioelectrochemistry, 2015, 105, 78-87.	2.4	16
166	Predicting Electrocatalytic Properties: Modeling Structure–Activity Relationships of Nitroxyl Radicals. Journal of the American Chemical Society, 2015, 137, 16179-16186.	6.6	91
167	CuCo ₂ O ₄ ORR/OER Bi-Functional Catalyst: Influence of Synthetic Approach on Performance. Journal of the Electrochemical Society, 2015, 162, F449-F454.	1.3	104
168	Original Mechanochemical Synthesis of Non-Platinum Group Metals Oxygen Reduction Reaction Catalysts Assisted by Sacrificial Support Method. Electrochimica Acta, 2015, 179, 154-160.	2.6	78
169	Double hamber Microbial Fuel Cell with a Nonâ€Platinumâ€Group Metal Fe–N–C Cathode Catalyst. ChemSusChem, 2015, 8, 828-834.	3.6	75
170	Relationship between surface chemistry, biofilm structure, and electron transfer in <i>Shewanella</i> anodes. Biointerphases, 2015, 10, 019013.	0.6	42
171	Computational and experimental evidence for a new TM–N ₃ /C moiety family in non-PGM electrocatalysts. Physical Chemistry Chemical Physics, 2015, 17, 17785-17789.	1.3	98
172	Non-PGM membrane electrode assemblies: Optimization for performance. International Journal of Hydrogen Energy, 2015, 40, 14676-14682.	3.8	29
173	Cathode materials for ceramic based microbial fuel cells (MFCs). International Journal of Hydrogen Energy, 2015, 40, 14706-14715.	3.8	53
174	Surface Modification for Enhanced Biofilm Formation and Electron Transport in Shewanella Anodes. Journal of the Electrochemical Society, 2015, 162, H597-H603.	1.3	57
175	Nano-structured non-platinum catalysts for automotive fuel cell application. Nano Energy, 2015, 16, 293-300.	8.2	190
176	Application of the Discrete Wavelet Transform to SEM and AFM Micrographs for Quantitative Analysis of Complex Surfaces. Langmuir, 2015, 31, 4924-4933.	1.6	15
177	Structural correlations: Design levers for performance and durability of catalyst layers. Journal of Power Sources, 2015, 284, 631-641.	4.0	27
178	Influence of anode surface chemistry on microbial fuel cell operation. Bioelectrochemistry, 2015, 106, 141-149.	2.4	88
179	Bio-inspired design of electrocatalysts for oxalate oxidation: a combined experimental and computational study of Mn–N–C catalysts. Physical Chemistry Chemical Physics, 2015, 17, 13235-13244.	1.3	26
180	Direct Methanol Anion Exchange Membrane Fuel Cell with a Non-Platinum Group Metal Cathode based on Iron-Aminoantipyrine Catalyst. Electrochimica Acta, 2015, 175, 202-208.	2.6	34

#	Article	IF	CITATIONS
181	Mechanistic Study of Electrooxidation of Ethanol on PtSn Nanoparticles in Alkaline and Acid Media. Journal of the Electrochemical Society, 2015, 162, H345-H351.	1.3	19
182	Operando XAFS study of carbon supported Ni, NiZn, and Co catalysts for hydrazine electrooxidation for use in anion exchange membrane fuel cells. Electrochimica Acta, 2015, 163, 116-122.	2.6	61
183	Enzymatic Oxygen Microsensor Based on Bilirubin Oxidase Applied to Microbial Fuel Cells Analysis. Electroanalysis, 2015, 27, 327-335.	1.5	17
184	Chemistry of Multitudinous Active Sites for Oxygen Reduction Reaction in Transition Metal–Nitrogen–Carbon Electrocatalysts. Journal of Physical Chemistry C, 2015, 119, 25917-25928.	1.5	433
185	Palladium Supported on 3D Graphene as an Active Catalyst for Alcohols Electrooxidation. Journal of the Electrochemical Society, 2015, 162, F1305-F1309.	1.3	41
186	Modeling of Low-Temperature Fuel Cell Electrodes Using Non-Precious Metal Catalysts. Journal of the Electrochemical Society, 2015, 162, F1253-F1261.	1.3	35
187	A Hybrid DNA-Templated Gold Nanocluster For Enhanced Enzymatic Reduction of Oxygen. Journal of the American Chemical Society, 2015, 137, 11678-11687.	6.6	128
188	Paper based biofuel cells: Incorporating enzymatic cascades for ethanol and methanol oxidation. International Journal of Hydrogen Energy, 2015, 40, 14661-14666.	3.8	33
189	Metal oxides/CNT nano-composite catalysts for oxygen reduction/oxygen evolution in alkaline media. Applied Catalysis B: Environmental, 2015, 163, 623-627.	10.8	170
190	Ni-La Electrocatalysts for Direct Hydrazine Alkaline Anion-Exchange Membrane Fuel Cells. Journal of the Electrochemical Society, 2014, 161, H3106-H3112.	1.3	12
191	NAD ⁺ /NADH Tethering on MWNTs-Bucky Papers for Glucose Dehydrogenase-Based Anodes. Journal of the Electrochemical Society, 2014, 161, H3020-H3028.	1.3	17
192	Improved Interfacial Electron Transfer in Modified Bilirubin Oxidase Biocathodes. ChemElectroChem, 2014, 1, 241-248.	1.7	64
193	The effects of wastewater types on power generation and phosphorus removal of microbial fuel cells (MFCs) with activated carbon (AC) cathodes. International Journal of Hydrogen Energy, 2014, 39, 21796-21802.	3.8	28
194	Hydrazine Sensor for Quantitative Determination of High Hydrazine Concentrations for Direct Hydrazine Fuel Cell Vehicle Applications. Journal of the Electrochemical Society, 2014, 161, H79-H85.	1.3	9
195	Gas-Diffusion Cathodes Integrating Carbon Nanotube Modified-Toray Paper and Bilirubin Oxidase. Journal of the Electrochemical Society, 2014, 161, H523-H528.	1.3	9
196	Combinatorial discovery of Ni-based binary and ternary catalysts for hydrazine electrooxidation for use in anion exchange membrane fuel cells. Journal of Power Sources, 2014, 247, 605-611.	4.0	85
197	Non-platinum Carbon-Supported Oxygen Reduction Catalyst Ink Evaluation Based on Poly(sulfone) and Poly(phenylene)-Derived lonomers in Alkaline Media. Electrocatalysis, 2014, 5, 148-158.	1.5	6
198	Elucidating Oxygen Reduction Active Sites in Pyrolyzed Metal–Nitrogen Coordinated Non-Precious-Metal Electrocatalyst Systems. Journal of Physical Chemistry C, 2014, 118, 8999-9008.	1.5	461

#	Article	IF	CITATIONS
199	Design of experiments and principal component analysis asÂapproaches for enhancing performance of gas-diffusional air-breathing bilirubin oxidase cathode. Journal of Power Sources, 2014, 245, 389-397.	4.0	28
200	Hierarchically Structured Non-PGM Oxygen Reduction Electrocatalyst Based on Microemulsion-Templated Silica and Pyrolyzed Iron and Cyanamide Precursors. Electrocatalysis, 2014, 5, 241-247.	1.5	35
201	Feâ€N Oxygen Reduction Fuel Cell Catalyst Derived from Carbendazim: Synthesis, Structure, and Reactivity. Advanced Energy Materials, 2014, 4, 1301735.	10.2	350
202	Quinoneâ€Modified Surfaces for Enhanced Enzyme–Electrode Interactions in Pyrroloquinolineâ€Quinoneâ€Dependent Glucose Dehydrogenase Anodes. ChemElectroChem, 2014, 1, 2017-2028.	1.7	14
203	Mechanistic Insight into Oxideâ€Promoted Palladium Catalysts for the Electroâ€Oxidation of Ethanol. ChemSusChem, 2014, 7, 2351-2357.	3.6	49
204	In Situ XAFS and HAXPES Analysis and Theoretical Study of Cobalt Polypyrrole Incorporated on Carbon (CoPPyC) Oxygen Reduction Reaction Catalysts for Anion-Exchange Membrane Fuel Cells. Journal of Physical Chemistry C, 2014, 118, 25480-25486.	1.5	18
205	Biological Fuel Cells: Cardinal Advances and Critical Challenges. ChemElectroChem, 2014, 1, 1702-1704.	1.7	8
206	Atomic Layer Deposition of <scp>l</scp> -Alanine Polypeptide. Journal of the American Chemical Society, 2014, 136, 15821-15824.	6.6	7
207	CO ₂ Electroreduction to Hydrocarbons on Carbon-Supported Cu Nanoparticles. ACS Catalysis, 2014, 4, 3682-3695.	5.5	267
208	Anion-exchange membranes in electrochemical energy systems. Energy and Environmental Science, 2014, 7, 3135-3191.	15.6	1,617
209	Innovative statistical interpretation of Shewanella oneidensis microbial fuel cells data. Physical Chemistry Chemical Physics, 2014, 16, 8956-8969.	1.3	13
210	Applicability of density functional theory in reproducing accurate vibrational spectra of surface bound species. Journal of Computational Chemistry, 2014, 35, 1921-1929.	1.5	2
211	Anode Catalysts for Direct Hydrazine Fuel Cells: From Laboratory Test to an Electric Vehicle. Angewandte Chemie - International Edition, 2014, 53, 10336-10339.	7.2	142
212	Effect of enzymatic orientation through the use of syringaldazine molecules on multiple multi-copper oxidase enzymes. Physical Chemistry Chemical Physics, 2014, 16, 13367-13375.	1.3	39
213	Mechanistic studies of oxygen reduction on Fe-PEI derived non-PGM electrocatalysts. Applied Catalysis B: Environmental, 2014, 150-151, 179-186.	10.8	61
214	Surface Modification of Microbial Fuel Cells Anodes: Approaches to Practical Design. Electrochimica Acta, 2014, 134, 116-126.	2.6	89
215	Catalytic biofilm formation by Shewanella oneidensis MR-1 and anode characterization by expanded uncertainty. Electrochimica Acta, 2014, 126, 3-10.	2.6	54
216	Density functional theory study of the oxygen reduction reaction mechanism in a BN co-doped graphene electrocatalyst. Journal of Materials Chemistry A, 2014, 2, 10273.	5.2	88

#	Article	IF	CITATIONS
217	A density functional theory study of oxygen reduction reaction on non-PGM Fe–Nx–C electrocatalysts. Physical Chemistry Chemical Physics, 2014, 16, 13800.	1.3	170
218	Parameters characterization and optimization of activated carbon (AC) cathodes for microbial fuel cell application. Bioresource Technology, 2014, 163, 54-63.	4.8	102
219	Practical electricity generation from a paper based biofuel cell powered by glucose in ubiquitous liquids. Electrochemistry Communications, 2014, 45, 44-47.	2.3	62
220	Microfluidic Synthesis of Monodisperse Nanoporous Oxide Particles and Control of Hierarchical Pore Structure. ACS Applied Materials & Interfaces, 2013, 5, 3524-3529.	4.0	16
221	Electrooxidation of hydrazine hydrate using Ni–La catalyst for anion exchange membrane fuel cells. Journal of Power Sources, 2013, 234, 252-259.	4.0	72
222	Multianalytical Study of the PTFE Content Local Variation of the PEMFC Gas Diffusion Layer. Journal of the Electrochemical Society, 2013, 160, F1305-F1315.	1.3	23
223	Microbial-enzymatic-hybrid biological fuel cell with optimized growth conditions for Shewanella oneidensis DSP-10. Enzyme and Microbial Technology, 2013, 53, 123-127.	1.6	6
224	Borohydride-tolerant oxygen electroreduction catalyst for mixed-reactant Swiss-roll direct borohydride fuel cells. Journal of Materials Chemistry A, 2013, 1, 14384.	5.2	46
225	A mechanistic study of 4-aminoantipyrine and iron derived non-platinum group metal catalyst on the oxygen reduction reaction. Electrochimica Acta, 2013, 90, 656-665.	2.6	102
226	pH dependence of catalytic activity for ORR of the non-PGM catalyst derived from heat-treated Fe–phenanthroline. Electrochimica Acta, 2013, 87, 361-365.	2.6	82
227	Catalytic activity of Co–N _x /C electrocatalysts for oxygen reduction reaction: a density functional theory study. Physical Chemistry Chemical Physics, 2013, 15, 148-153.	1.3	303
228	Tri-metallic transition metal–nitrogen–carbon catalysts derived by sacrificial support method synthesis. Electrochimica Acta, 2013, 109, 433-439.	2.6	71
229	Power generation from a hybrid biological fuel cell in seawater. Bioresource Technology, 2013, 128, 222-228.	4.8	28
230	Biofuel Cells for Biomedical Applications: Colonizing the Animal Kingdom. ChemPhysChem, 2013, 14, 2045-2058.	1.0	80
231	Hydrogen adsorption properties of platinum decorated hierarchically structured templated carbons. Microporous and Mesoporous Materials, 2013, 177, 66-74.	2.2	27
232	Novel Pd–In catalysts for alcohols electrooxidation in alkaline media. Electrochemistry Communications, 2013, 34, 185-188.	2.3	78
233	Xâ€Ray Photoelectron Spectroscopy for Characterization of Bionanocomposite Functional Materials for Energyâ€Harvesting Technologies. ChemPhysChem, 2013, 14, 2071-2080.	1.0	22
234	Biofuel Cell Anodes Integrating NAD ⁺ -Dependent Enzymes and Multiwalled Carbon Nanotube Papers. ECS Journal of Solid State Science and Technology, 2013, 2, M3156-M3159.	0.9	14

#	Article	IF	CITATIONS
235	High Power Generation by a Membraneless Single Chamber Microbial Fuel Cell (SCMFC) Using Enzymatic Bilirubin Oxidase (BOx) Air-Breathing Cathode. Journal of the Electrochemical Society, 2013, 160, H720-H726.	1.3	44
236	Enzyme-Modified Buckypaper for Bioelectrocatalysis. Journal of the Electrochemical Society, 2013, 160, G3178-G3182.	1.3	42
237	Catalysts for Electrooxidation of Ethanol and Other Biofuels. ECS Meeting Abstracts, 2013, , .	0.0	Ο
238	Mechanistic Studies On Fe-PEI Derived Non-PGM Catalysts for Oxygen Reduction. ECS Meeting Abstracts, 2013, , .	0.0	0
239	Palladium Alloy Catalysts Synthesized By Sacrificial Support Method for the Electrooxidation of Ethylene Glycol in Alkaline Environment. ECS Meeting Abstracts, 2013, , .	0.0	Ο
240	Carbon and Composite Nanostructured Materials for Energy Applications. ECS Meeting Abstracts, 2013, , .	0.0	0
241	Modification of Carbon Nanotube Electrodes with 1-Pyrenebutanoic Acid, Succinimidyl Ester for Enhanced Bioelectrocatalysis. Methods in Molecular Biology, 2013, 1051, 217-228.	0.4	6
242	Immobilization of Whole Cells by Chemical Vapor Deposition of Silica. Methods in Molecular Biology, 2013, 1051, 301-312.	0.4	3
243	Investigating the effects of proton exchange membrane fuel cell conditions on carbon supported platinum electrocatalyst composition and performance. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2012, 30, .	0.9	6
244	Density Functional Theory Study of Ni–N _{<i>x</i>} /C Electrocatalyst for Oxygen Reduction in Alkaline and Acidic Media. Journal of Physical Chemistry C, 2012, 116, 17378-17383.	1.5	120
245	Aerosol-derived Ni1â^'xZnx electrocatalysts for direct hydrazine fuel cells. Physical Chemistry Chemical Physics, 2012, 14, 5512.	1.3	81
246	A study of the flavin response by Shewanella cultures in carbon-limited environments. RSC Advances, 2012, 2, 10020.	1.7	18
247	Controlled Deposition of Structured Polymer Films: Chemical and Rheological Factors in Chitosan Film Formation. Langmuir, 2012, 28, 2589-2595.	1.6	9
248	Kinetic and Mechanistic Parameters of Laccase Catalyzed Direct Electrochemical Oxygen Reduction Reaction. ACS Catalysis, 2012, 2, 38-44.	5.5	93
249	Use of digital image processing of microscopic images and multivariate analysis for quantitative correlation of morphology, activity and durability of electrocatalysts. RSC Advances, 2012, 2, 4304.	1.7	20
250	Stability, Electronic and Magnetic Properties of In-Plane Defects in Graphene: A First-Principles Study. Journal of Physical Chemistry C, 2012, 116, 8161-8166.	1.5	187
251	Structure-to-property relationships in fuel cell catalyst supports: Correlation of surface chemistry and morphology with oxidation resistance of carbon blacks. Journal of Power Sources, 2012, 214, 303-313.	4.0	67
252	Highly active and durable templated non-PGM cathode catalysts derived from iron and aminoantipyrine. Electrochemistry Communications, 2012, 22, 53-56.	2.3	94

#	Article	IF	CITATIONS
253	Highly active PdCu catalysts for electrooxidation of 2-propanol. Electrochemistry Communications, 2012, 22, 193-196.	2.3	51
254	Templated non-PGM cathode catalysts derived from iron and poly(ethyleneimine) precursors. Applied Catalysis B: Environmental, 2012, 127, 300-306.	10.8	81
255	Development of paper based electrodes: From air-breathing to paintable enzymatic cathodes. Electrochimica Acta, 2012, 82, 208-213.	2.6	73
256	Templated bi-metallic non-PGM catalysts for oxygen reduction. Electrochimica Acta, 2012, 80, 213-218.	2.6	75
257	Electrooxidation of ethanol on PtSn nanoparticles in alkaline solution: Correlation between structure and catalytic properties. Electrochimica Acta, 2012, 80, 377-382.	2.6	17
258	Hierarchically Structured Pt–Alloy Ethanol Oxidation Electrocatalysts. Electrocatalysis, 2012, 3, 334-345.	1.5	3
259	Paper based Biofuel Cells: Design of Air-Breathing Bio-cathodes. ECS Meeting Abstracts, 2012, , .	0.0	0
260	Goldâ€Decorated Carbon Composite Electrodes for Enzymatic Oxygen Reduction. Electroanalysis, 2012, 24, 931-937.	1.5	11
261	Preparation, characterization and single-cell performance of a new class of Pd-carbon nitride electrocatalysts for oxygen reduction reaction in PEMFCs. Applied Catalysis B: Environmental, 2012, 111-112, 185-199.	10.8	56
262	Mechanistic study of direct electron transfer in bilirubin oxidase. Electrochimica Acta, 2012, 61, 44-49.	2.6	87
263	Electrooxidation of ethylene glycol and glycerol by platinum-based binary and ternary nano-structured catalysts. Electrochimica Acta, 2012, 66, 295-301.	2.6	107
264	New materials for biological fuel cells. Materials Today, 2012, 15, 166-173.	8.3	141
265	Characterization and Stability Study of Immobilized PQQâ€Dependent Aldose Dehydrogenase Bioanodes. Electroanalysis, 2012, 24, 229-238.	1.5	8
266	Design of Carbon Nanotubeâ€Based Gasâ€Diffusion Cathode for O ₂ Reduction by Multicopper Oxidases. Advanced Energy Materials, 2012, 2, 162-168.	10.2	74
267	Paper-Based Biofuel Cells. ECS Meeting Abstracts, 2012, , .	0.0	3
268	Study of Nanoimprinting Process and its Application for Infrared Detection. , 2012, , .		0
269	Platinum Supported on NbRu _{<i>y</i>} O _{<i>z</i>} as Electrocatalyst for Ethanol Oxidation in Acid and Alkaline Fuel Cells. Journal of Physical Chemistry C, 2011, 115, 3043-3056.	1.5	43
270	Electrochemical Studies and DFT Analysis of Pt Stability and Surface Passivation on NbRuyOz Support. Journal of the Electrochemical Society, 2011, 158, B804.	1.3	2

#	Article	IF	CITATIONS
271	Engineering of a redox protein for DNA-directed assembly. Chemical Communications, 2011, 47, 7464.	2.2	6
272	Design Parameters for Tuning the Type 1 Cu Multicopper Oxidase Redox Potential: Insight from a Combination of First Principles and Empirical Molecular Dynamics Simulations. Journal of the American Chemical Society, 2011, 133, 4802-4809.	6.6	81
273	Hybrid Biofuel Cell: Microbial Fuel Cell with an Enzymatic Air-Breathing Cathode. ACS Catalysis, 2011, 1, 994-997.	5.5	80
274	Engineering of Glucose Oxidase for Direct Electron Transfer via Site-Specific Gold Nanoparticle Conjugation. Journal of the American Chemical Society, 2011, 133, 19262-19265.	6.6	238
275	Methylene Green Electrodeposited on SWNTs-Based "Bucky―Papers for NADH and l-Malate Oxidation. ACS Applied Materials & Interfaces, 2011, 3, 2402-2409.	4.0	66
276	Electrochemical DNA Hybridization Assay: Enzyme‣abeled Detection of Mutation in p53 Gene. Electroanalysis, 2011, 23, 1615-1622.	1.5	11
277	Interaction of Heat Generation, MPL, and Water Retention in Corroded PEMFCs. ECS Transactions, 2011, 41, 337-348.	0.3	9
278	Non-PGM Cathode Catalysts for Alkaline Membrane Fuel Cells: Enhancement an Optimization. ECS Meeting Abstracts, 2011, , .	0.0	0
279	Non-PGM Electrocatalysts for ORR: Structure and Reactivity of M-N-C Catalysts. ECS Meeting Abstracts, 2011, , .	0.0	0
280	Electrochemical and in situ IR characterization of PtRu catalysts for complete oxidation of ethylene glycol and glycerol. Electrochemistry Communications, 2011, 13, 1488-1491.	2.3	36
281	Direct bio-electrocatalysis by multi-copper oxidases: Gas-diffusion laccase-catalyzed cathodes for biofuel cells. Electrochimica Acta, 2011, 56, 10767-10771.	2.6	57
282	Enzymatic fuel cells: Integrating flow-through anode and air-breathing cathode into a membrane-less biofuel cell design. Biosensors and Bioelectronics, 2011, 27, 132-136.	5.3	104
283	Standardized Characterization of a Flow Through Microbial Fuel Cell. Electroanalysis, 2011, 23, 2174-2181.	1.5	8
284	Fabrication of macroporous chitosan scaffolds doped with carbon nanotubes and their characterization in microbial fuel cell operation. Enzyme and Microbial Technology, 2011, 48, 458-465.	1.6	86
285	Flow-through 3D biofuel cell anode for NAD+-dependent enzymes. Electrochimica Acta, 2011, 56, 2503-2509.	2.6	37
286	Direct electron transfer catalyzed by bilirubin oxidase for air breathing gas-diffusion electrodes. Electrochemistry Communications, 2011, 13, 247-249.	2.3	91
287	Electrooxidation of Ethylene Glycol and Glycerol by Pt Based Binary and Ternary Templated Catalysts in Alkaline Media. ECS Transactions, 2011, 41, 1681-1689.	0.3	5
288	Pt ₇ Sn ₃ Catalysts for Ethanol Electro-Oxidation: Correlation between Surface Structure and Catalytic Activity. ECS Transactions, 2011, 41, 1691-1700.	0.3	4

#	Article	IF	CITATIONS
289	Functional DMFC Cathode Catalysts and Supports Based on Niobium Oxide Phase. Journal of the Electrochemical Society, 2011, 158, B485.	1.3	7
290	Effect of Graphitic Content on Carbon Supported Catalyst Performance. ECS Transactions, 2011, 41, 845-852.	0.3	1
291	Highly methanol-tolerant non-precious metal cathode catalysts for direct methanol fuel cell. Electrochimica Acta, 2010, 55, 7615-7621.	2.6	64
292	Structure and Electrochemical Properties of Electrocatalysts for NADH Oxidation. Electroanalysis, 2010, 22, 799-806.	1.5	44
293	Glucose Oxidase Catalyzed Selfâ€Assembly of Bioelectroactive Gold Nanostructures. Electroanalysis, 2010, 22, 784-792.	1.5	16
294	Novel KOH-free anion-exchange membrane fuel cell: Performance comparison of alternative anion-exchange ionomers in catalyst ink. Electrochimica Acta, 2010, 55, 3404-3408.	2.6	58
295	Chemical polymerization and electrochemical characterization of thiazines for NADH electrocatalysis applications. Electrochimica Acta, 2010, 55, 6659-6664.	2.6	19
296	Surface characterization and direct bioelectrocatalysis of multicopper oxidases. Electrochimica Acta, 2010, 55, 7385-7393.	2.6	55
297	Advanced Glucose-Air Enzymatic Fuel Cell for Portable Applications. ECS Meeting Abstracts, 2010, , .	0.0	1
298	Characterization of Flow-Through Microbial Fuel Cells. ECS Meeting Abstracts, 2010, , .	0.0	0
299	Non-Pt Cathode Catalysts for Alkaline Membrane Fuel Cells. ECS Meeting Abstracts, 2010, , .	0.0	0
300	Nucleation of Platinum on Carbon Blacks. ECS Transactions, 2010, 33, 73-82.	0.3	0
301	Bimetallic Ni Alloys for the Electrooxidation of Hydrazine in Alkaline Media. ECS Transactions, 2010, 33, 1673-1680.	0.3	9
302	Open Frame Structures for Nonplatinum Catalysts: Colloidal Approach to Transition Metal/Nitrogen-Containing Carbon-Supported Electrocatalysts. ECS Transactions, 2010, 33, 1787-1794.	0.3	0
303	Bifunctional Oxygen Reduction Reaction Mechanism on Non-Platinum Catalysts Derived from Pyrolyzed Porphyrins. Journal of the Electrochemical Society, 2010, 157, B54.	1.3	180
304	XAFS Analysis of Unpyrolyzed CoPPyC Oxygen Reduction Catalysts for Anion-Exchange Membrane Fuel Cells (AMFC). ECS Transactions, 2010, 33, 1751-1755.	0.3	2
305	Gold-Decorated Flow-Through Electrodes: Effect of Electrochemical Time Constant on Electrodeposition of Au Particles on Reticulated Vitreous Carbon. Electrochemical and Solid-State Letters, 2010, 13, D11.	2.2	3
306	Structural and Morphological Properties of Carbon Supports: Effect on Catalyst Degradation. ECS Transactions, 2010, 33, 425-431.	0.3	2

#	Article	IF	CITATIONS
307	Effect of Alloying Pd with Oxophillic Metals on Electro-Oxidation of Alcohols in Alkaline Media. ECS Transactions, 2010, 33, 1655-1663.	0.3	0
308	Model Electrode Structures for Studies of Electrocatalyst Degradation. ECS Transactions, 2010, 33, 361-368.	0.3	4
309	Electrochemical and DFT Analysis of Deactivation of Pt Supported on Niobia. ECS Transactions, 2010, 33, 191-200.	0.3	1
310	Defects on Graphene with and without Nitrogen. ECS Transactions, 2010, 33, 551-555.	0.3	3
311	Selectivity of Cobalt-Based Non-Platinum Oxygen Reduction Catalysts in the Presence of Methanol and Formic Acid. Journal of Physical Chemistry C, 2010, 114, 15190-15195.	1.5	19
312	Growth of Phthalocyanine Doped and Undoped Nanotubes Using Mild Synthesis Conditions for Development of Novel Oxygen Reduction Catalysts. ACS Applied Materials & Interfaces, 2010, 2, 3295-3302.	4.0	110
313	Standardized microbial fuel cell anodes of silica-immobilized Shewanella oneidensis. Chemical Communications, 2010, 46, 6048.	2.2	54
314	Synthesis by Spray Pyrolysis of Mesoporous NbRuyOz as Electrocatalyst Supports in Fuel Cells. ACS Applied Materials & Interfaces, 2010, 2, 86-95.	4.0	16
315	Direct Glucose Fuel Cell: Noble Metal Catalyst Anode Polymer Electrolyte Membrane Fuel Cell with Glucose Fuel. Journal of the Electrochemical Society, 2010, 157, B86.	1.3	23
316	Anion-Exchange Membrane Fuel Cells: Dual-Site Mechanism of Oxygen Reduction Reaction in Alkaline Media on Cobaltâ^'Polypyrrole Electrocatalysts. Journal of Physical Chemistry C, 2010, 114, 5049-5059.	1.5	255
317	Templated Platinum/Carbon Oxygen Reduction Fuel Cell Electrocatalysts. Journal of Physical Chemistry C, 2010, 114, 4200-4207.	1.5	30
318	Nanoparticle Size Effects on the Electrochemical Dissolution Rate of Pt. ECS Transactions, 2009, 25, 593-600.	0.3	3
319	Electrochemical Evaluation of Porous Nonâ€Platinum Oxygen Reduction Catalysts for Polymer Electrolyte Fuel Cells. Fuel Cells, 2009, 9, 547-553.	1.5	40
320	Templated Pt–Sn electrocatalysts for ethanol, methanol and CO oxidation in alkaline media. Electrochimica Acta, 2009, 54, 989-995.	2.6	71
321	Rapid detection of anti-chromatin autoantibodies in human serum using a portable electrochemical biosensor. Biosensors and Bioelectronics, 2009, 24, 1949-1954.	5.3	22
322	Composition- and Morphology-Dependent Corrosion Stability of Ruthenium Oxide Materials. ACS Applied Materials & Interfaces, 2009, 1, 604-611.	4.0	23
323	Cross-Laboratory Experimental Study of Non-Noble-Metal Electrocatalysts for the Oxygen Reduction Reaction. ACS Applied Materials & amp; Interfaces, 2009, 1, 1623-1639.	4.0	655
324	Oxygen-reducing enzyme cathodes produced from SLAC, a small laccase from Streptomyces coelicolor. Biosensors and Bioelectronics, 2008, 23, 1229-1235.	5.3	109

#	Article	IF	CITATIONS
325	Entrapment of Enzymes and Carbon Nanotubes in Biologically Synthesized Silica: Glucose Oxidaseâ€Catalyzed Direct Electron Transfer. Small, 2008, 4, 357-364.	5.2	171
326	Standardized Characterization of Electrocatalytic Electrodes. Electroanalysis, 2008, 20, 1099-1109.	1.5	49
327	Non-platinum cathode catalyst layer composition for single Membrane Electrode Assembly Proton Exchange Membrane Fuel Cell. Journal of Power Sources, 2008, 183, 557-563.	4.0	59
328	Surface characterization and direct electrochemistry of redox copper centers of bilirubin oxidase from fungi Myrothecium verrucaria. Bioelectrochemistry, 2008, 74, 101-110.	2.4	63
329	Non-platinum oxygen reduction electrocatalysts based on pyrolyzed transition metal macrocycles. Electrochimica Acta, 2008, 53, 7875-7883.	2.6	241
330	Direct Spectroscopic Observation of the Structural Origin of Peroxide Generation from Co-Based Pyrolyzed Porphyrins for ORR Applications. Journal of Physical Chemistry C, 2008, 112, 8839-8849.	1.5	215
331	Conductive Macroporous Composite Chitosanâ^'Carbon Nanotube Scaffolds. Langmuir, 2008, 24, 7004-7010.	1.6	159
332	Predictive Modeling of Electrocatalyst Structure Based on Structure-to-Property Correlations of X-ray Photoelectron Spectroscopic and Electrochemical Measurements. Langmuir, 2008, 24, 9082-9088.	1.6	84
333	Biosensors based on Enzyme-Catalyzed Direct Electron Transfer. ECS Meeting Abstracts, 2008, , .	0.0	Ο
334	Two-Dimensional Nanoparticle Arrays Derived from Ferritin Monolayers. Langmuir, 2007, 23, 5498-5504.	1.6	35
335	Direct Bioelectrocatalysis of PQQ-Dependent Glucose Dehydrogenase. Electroanalysis, 2007, 19, 1562-1568.	1.5	83
336	Electrochemical Studies of Intramolecular Electron Transfer in Laccase from <i>Trametes versicolor</i> . Electroanalysis, 2007, 19, 2307-2313.	1.5	62
337	XPS Structural Studies of Nano-composite Non-platinum Electrocatalysts for Polymer Electrolyte Fuel Cells. Topics in Catalysis, 2007, 46, 263-275.	1.3	159
338	Nanostructured Anode Pt–Ru Electrocatalysts for Direct Methanol Fuel Cells. Topics in Catalysis, 2007, 46, 334-338.	1.3	14
339	Enzymatic Biofuel Cells. Electrochemical Society Interface, 2007, 16, 28-31.	0.3	88
340	Uniformity of Current Density Distribution at Pattern Scale during Electrochemical Micromachining by Porous-Type Anodization. Journal of the Electrochemical Society, 2006, 153, C801.	1.3	6
341	Convective self-assembly to deposit supported ultra-thin mesoporous silica films. Journal of Materials Chemistry, 2006, 16, 4637.	6.7	27
342	Robust hybrid thin films that incorporate lamellar phospholipid bilayer assemblies and transmembrane proteins. Biointerphases, 2006, 1, 6-10.	0.6	8

#	Article	IF	CITATIONS
343	Magnetic properties of self-assembled ferritin-core arrays. Journal of Applied Physics, 2006, 99, 08Q509.	1.1	6
344	Glucose oxidase anode for biofuel cell based on direct electron transfer. Electrochemistry Communications, 2006, 8, 1204-1210.	2.3	269
345	Fabrication and testing of a miniature H2/O2 and MeOH/O2 fuel cell. Journal of Power Sources, 2006, 162, 255-261.	4.0	5
346	Electrochemical Oxidation Resistance of Carbonaceous Materials. ECS Transactions, 2006, 1, 41-50.	0.3	12
347	Electrochemical Micromachining. Electrochemical and Solid-State Letters, 2006, 9, B35.	2.2	6
348	Width of Anodization Mask Required to Preserve a Metallic Phase during Porous-Type Anodization of Aluminum-Copper Films. Journal of the Electrochemical Society, 2006, 153, B108.	1.3	7
349	Durability of PEFCs at High Humidity Conditions. Journal of the Electrochemical Society, 2005, 152, A104.	1.3	332
350	Microstructural Changes of Membrane Electrode Assemblies during PEFC Durability Testing at High Humidity Conditions. Journal of the Electrochemical Society, 2005, 152, A1011.	1.3	328
351	Electrodeposition of Gold Particles on Aluminum Substrates Containing Copper. Journal of Physical Chemistry B, 2005, 109, 1243-1250.	1.2	14
352	Bioelectrocatalysis of Oxygen Reduction Reaction by Laccase on Gold Electrodes. Electroanalysis, 2004, 16, 1182-1185.	1.5	86
353	Enzymatic Biofuel Cells for Implantable and Microscale Devices. ChemInform, 2004, 35, no.	0.1	0
354	Photoregulation of Mass Transport through a Photoresponsive Azobenzene-Modified Nanoporous Membrane. Nano Letters, 2004, 4, 551-554.	4.5	352
355	Electroless Deposition of Silver by Galvanic Displacement on Aluminum Alloyed with Copper. Journal of Physical Chemistry B, 2004, 108, 17531-17536.	1.2	56
356	Enzymatic Biofuel Cells for Implantable and Microscale Devices. Chemical Reviews, 2004, 104, 4867-4886.	23.0	1,322
357	Laccase Biosensor on Monolayer-Modified Gold Electrode. Electroanalysis, 2003, 15, 1577-1583.	1.5	62
358	Growth of Patterned Nanopore Arrays of Anodic Aluminum Oxide. Advanced Materials, 2003, 15, 2015-2018.	11.1	33
359	Investigating the Nature of the Active Sites for the CO ₂ Reduction Reaction on Carbon-Based Electrocatalysts. SSRN Electronic Journal, 0, , .	0.4	0