
Shailendra Pratap Singh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8615406/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Exploring New Drug Targets for Type 2 Diabetes: Success, Challenges and Opportunities. Biomedicines, 2022, 10, 331.	1.4	17
2	SARS-CoV-2 Infections, Impaired Tissue, and Metabolic Health: Pathophysiology and Potential Therapeutics. Mini-Reviews in Medicinal Chemistry, 2022, 22, 2102-2123.	1.1	3
3	Adipocyte-Specific Expression of PGC1α Promotes Adipocyte Browning and Alleviates Obesity-Induced Metabolic Dysfunction in an HO-1-Dependent Fashion. Antioxidants, 2022, 11, 1147.	2.2	9
4	Biological systems and nanopharmacokinetics. , 2021, , 153-170.		0
5	Mitochondrial Modulations, Autophagy Pathways Shifts in Viral Infections: Consequences of COVID-19. International Journal of Molecular Sciences, 2021, 22, 8180.	1.8	22
6	The Association of Nephroblastoma Overexpressed (NOV) and Endothelial Progenitor Cells with Oxidative Stress in Obstructive Sleep Apnea. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-10.	1.9	1
7	Adipocyte Specific HO-1 Gene Therapy Is Effective in Antioxidant Treatment of Insulin Resistance and Vascular Function in an Obese Mice Model. Antioxidants, 2020, 9, 40.	2.2	22
8	Sirt6 Deacetylase: A Potential Key Regulator in the Prevention of Obesity, Diabetes and Neurodegenerative Disease. Frontiers in Pharmacology, 2020, 11, 598326.	1.6	10
9	Cold Press Pomegranate Seed Oil Attenuates Dietary-Obesity Induced Hepatic Steatosis and Fibrosis through Antioxidant and Mitochondrial Pathways in Obese Mice. International Journal of Molecular Sciences, 2020, 21, 5469.	1.8	30
10	Cardioprotective Heme Oxygenaseâ€1â€PGC1α Signaling in Epicardial Fat Attenuates Cardiovascular Risk in Humans as in Obese Mice. Obesity, 2019, 27, 1634-1643.	1.5	31
11	Epoxyeicosatrienoic intervention improves NAFLD in leptin receptor deficient mice by an increase in HO-1-PGC1α mitochondrial signaling. Experimental Cell Research, 2019, 380, 180-187.	1.2	35
12	EET enhances renal function in obese mice resulting in restoration of HO-1-Mfn1/2 signaling, and decrease in hypertension through inhibition of sodium chloride co-transporter. Prostaglandins and Other Lipid Mediators, 2018, 137, 30-39.	1.0	15
13	Development of NASH in Obese Mice is Confounded by Adipose Tissue Increase in Inflammatory NOV and Oxidative Stress. International Journal of Hepatology, 2018, 2018, 1-14.	0.4	34
14	Kavain Reduces <i>Porphyromonas gingivalis–</i> Induced Adipocyte Inflammation: Role of PGC-1α Signaling. Journal of Immunology, 2018, 201, 1491-1499.	0.4	21
15	Ablation of soluble epoxide hydrolase reprogram white fat to beige-like fat through an increase in mitochondrial integrity, HO-1-adiponectin in vitro and in vivo. Prostaglandins and Other Lipid Mediators, 2018, 138, 1-8.	1.0	27
16	High-fat diet-induced obesity and insulin resistance in CYP4a14 ^{â^'/â^'} mice is mediated by 20-HETE. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2018, 315, R934-R944.	0.9	29
17	EETâ€agonist Prevents and Reverses Heart Failure in Obesity Induced Diabetic Cardiomyopathy. FASEB Journal, 2018, 32, 561.7.	0.2	0
18	EET Enhances Renal Function in Obese Mice Resulting in Restoration of Mfn1/2 Signaling and a Decrease in Hypertension Through Inhibition of Sodium Chloride Coâ€Transporter. FASEB Journal, 2018, 32, 561.13.	0.2	0

#	Article	IF	CITATIONS
19	EET intervention on Wnt1, NOV, and HO-1 signaling prevents obesity-induced cardiomyopathy in obese mice. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 313, H368-H380.	1.5	53
20	The association of NOV/CCN3 with obstructive sleep apnea (OSA): preliminary evidence of a novel biomarker in OSA. Hormone Molecular Biology and Clinical Investigation, 2017, 31, .	0.3	11
21	Ablation of adipose-HO-1 expression increases white fat over beige fat through inhibition of mitochondrial fusion and of PGC11 \pm in female mice. Hormone Molecular Biology and Clinical Investigation, 2017, 31, .	0.3	25
22	Downregulation of PGC-1 <i>α</i> Prevents the Beneficial Effect of EET-Heme Oxygenase-1 on Mitochondrial Integrity and Associated Metabolic Function in Obese Mice. Journal of Nutrition and Metabolism, 2016, 2016, 1-15.	0.7	35
23	Epoxyeicosatrienoic Acids Regulate Adipocyte Differentiation of Mouse 3T3 Cells, Via PGC-1α Activation, Which Is Required for HO-1 Expression and Increased Mitochondrial Function. Stem Cells and Development, 2016, 25, 1084-1094.	1.1	67
24	Oxidized HDL is a potent inducer of adipogenesis and causes activation of the Ang-II and 20-HETE systems in human obese females. Prostaglandins and Other Lipid Mediators, 2016, 123, 68-77.	1.0	30
25	PGC-1 alpha regulates HO-1 expression, mitochondrial dynamics and biogenesis: Role of epoxyeicosatrienoic acid. Prostaglandins and Other Lipid Mediators, 2016, 125, 8-18.	1.0	93
26	Genotoxic effects of chromium oxide nanoparticles and microparticles in Wistar rats after 28Âdays of repeated oral exposure. Environmental Science and Pollution Research, 2016, 23, 3914-3924.	2.7	17
27	Abstract P233: Diabetic Cardiomyopathy is Reversed by Increased Mitochondrial Bioenergetics Due to PGC-1α Activation by EET Treatment of Obese Mice. Hypertension, 2016, 68, .	1.3	0
28	Abstract 079: Hmox1 Activation Reprograms White Fat to Beige Adipose Tissue Through Recruitment of Cyp2C44-derived EET, pAMPK-PGC1α That Enhances Mitochondrial Mfn2 and Opa1. Hypertension, 2016, 68, .	1.3	0
29	Abstract 024: PGC-1α is a Critical Activator of HO-1 That Protects Against Cardiomyopathy in Diabetic Mice Through Recruitment of Mitochondrial Fusion Proteins and Function. Hypertension, 2016, 68, .	1.3	0
30	Abstract P127: EET-mediated Recruitment of PGC-1α, Restores Mitochondrial Function, LV Function, and Ameliorates Development of Cardiovascular Disease in Db Mice That is Reversed by Lentiviral- PGC-1α (Sh). Hypertension, 2016, 68, .	1.3	0
31	Abstract P172: Activation of Pgc1α by EET Stimulates Insulin Sensitivity, Normalizes Blood Pressure and Increases Mitochondrial Oxphos in Obese Mice. Hypertension, 2016, 68, .	1.3	0
32	Glycogen synthase kinase-3 inhibition attenuates fibroblast activation and development of fibrosis following renal ischemia/reperfusion in mice. DMM Disease Models and Mechanisms, 2015, 8, 931-40.	1.2	50
33	Toxicity Study of Cerium Oxide Nanoparticles in Human Neuroblastoma Cells. International Journal of Toxicology, 2014, 33, 86-97.	0.6	117
34	Biochemical alterations induced by acute oral doses of iron oxide nanoparticles in Wistar rats. Drug and Chemical Toxicology, 2013, 36, 296-305.	1.2	57
35	Genotoxicity of nano- and micron-sized manganese oxide in rats after acute oral treatment. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2013, 754, 39-50.	0.9	29
36	Synthesis, biological evaluation and molecular modeling studies of some novel thiazolidinediones with triazole ring. European Journal of Medicinal Chemistry, 2013, 70, 308-314.	2.6	58

#	Article	IF	CITATIONS
37	Toxicity assessment of manganese oxide micro and nanoparticles in Wistar rats after 28 days of repeated oral exposure. Journal of Applied Toxicology, 2013, 33, 1165-1179.	1.4	100
38	Comparative study of genotoxicity and tissue distribution of nano and micron sized iron oxide in rats after acute oral treatment. Toxicology and Applied Pharmacology, 2013, 266, 56-66.	1.3	89
39	Monitoring of oxidative stress in nurses occupationally exposed to antineoplastic drugs. Toxicology International, 2012, 19, 20.	0.1	15
40	Repeated Oral Dose Toxicity of Iron Oxide Nanoparticles: Biochemical and Histopathological Alterations in Different Tissues of Rats. Journal of Nanoscience and Nanotechnology, 2012, 12, 2149-2159.	0.9	74
41	Development of a cell-based nonradioactive glucose uptake assay system for SGLT1 and SGLT2. Analytical Biochemistry, 2012, 429, 70-75.	1.1	42
42	In vivo assessment of genotoxic effects of Annona squamosa seed extract in rats. Food and Chemical Toxicology, 2009, 47, 1964-1971.	1.8	11