List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8615356/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Atrophic rhinitis: a CFD study of air conditioning in the nasal cavity. Journal of Applied Physiology, 2007, 103, 1082-1092.	1.2	184
2	A Systematic Review of Patient-Reported Nasal Obstruction Scores. JAMA Facial Plastic Surgery, 2014, 16, 219-225.	2.2	160
3	Olfactory deposition of inhaled nanoparticles in humans. Inhalation Toxicology, 2015, 27, 394-403.	0.8	125
4	Effects of surface smoothness on inertial particle deposition in human nasal models. Journal of Aerosol Science, 2011, 42, 52-63.	1.8	122
5	Septal Deviation and Nasal Resistance: An Investigation using Virtual Surgery and Computational Fluid Dynamics. American Journal of Rhinology and Allergy, 2010, 24, e46-e53.	1.0	120
6	Interindividual Variability in Nasal Filtration as a Function of Nasal Cavity Geometry. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2009, 22, 139-156.	0.7	100
7	Perception of Better Nasal Patency Correlates with Increased Mucosal Cooling after Surgery for Nasal Obstruction. Otolaryngology - Head and Neck Surgery, 2014, 150, 139-147.	1.1	99
8	Changes in nasal airflow and heat transfer correlate with symptom improvement after surgery for nasal obstruction. Journal of Biomechanics, 2013, 46, 2634-2643.	0.9	97
9	Dosimetry of nasal uptake of water-soluble and reactive gases: A first study of interhuman variability. Inhalation Toxicology, 2009, 21, 607-618.	0.8	83
10	LVAD Outflow Graft Angle and Thrombosis Risk. ASAIO Journal, 2017, 63, 14-23.	0.9	67
11	Toward Personalized Nasal Surgery Using Computational Fluid Dynamics. Archives of Facial Plastic Surgery, 2011, 13, 305.	0.8	65
12	Impact of Middle versus Inferior Total Turbinectomy on Nasal Aerodynamics. Otolaryngology - Head and Neck Surgery, 2016, 155, 518-525.	1.1	64
13	Objective Measures in Aesthetic and Functional Nasal Surgery: Perspectives on Nasal Form and Function. Facial Plastic Surgery, 2010, 26, 320-327.	0.5	59
14	Allometric scaling laws of metabolism. Physics of Life Reviews, 2006, 3, 229-261.	1.5	58
15	Computed nasal resistance compared with patient-reported symptoms in surgically treated nasal airway passages: A preliminary report. American Journal of Rhinology and Allergy, 2012, 26, 94-98.	1.0	58
16	Deposition of inhaled nanoparticles in the rat nasal passages: Dose to the olfactory region. Inhalation Toxicology, 2009, 21, 1165-1175.	0.8	57
17	Correlation between Subjective Nasal Patency and Intranasal Airflow Distribution. Otolaryngology - Head and Neck Surgery, 2017, 156, 741-750.	1.1	53
18	Numerical evaluation of spray position for improved nasal drug delivery. Scientific Reports, 2020, 10, 10568.	1.6	51

#	Article	IF	CITATIONS
19	Normative ranges of nasal airflow variables in healthy adults. International Journal of Computer Assisted Radiology and Surgery, 2020, 15, 87-98.	1.7	48
20	Simulating the Nasal Cycle with Computational Fluid Dynamics. Otolaryngology - Head and Neck Surgery, 2015, 152, 353-360.	1.1	47
21	The relationship between nasal resistance to airflow and the airspace minimal cross-sectional area. Journal of Biomechanics, 2016, 49, 1670-1678.	0.9	45
22	Predicting Postsurgery Nasal Physiology with Computational Modeling: Current Challenges and Limitations. Otolaryngology - Head and Neck Surgery, 2014, 151, 751-759.	1.1	39
23	Identifying patients who may benefit from inferior turbinate reduction using computer simulations. Laryngoscope, 2015, 125, 2635-2641.	1.1	38
24	Correlation of Nasal Mucosal Temperature With Subjective Nasal Patency in Healthy Individuals. JAMA Facial Plastic Surgery, 2017, 19, 46-52.	2.2	37
25	On the scaling of mammalian long bones. Journal of Experimental Biology, 2004, 207, 1577-1584.	0.8	36
26	A computational fluid dynamics approach to assess interhuman variability in hydrogen sulfide nasal dosimetry. Inhalation Toxicology, 2010, 22, 277-286.	0.8	34
27	Toward Personalized Nasal Surgery Using Computational Fluid Dynamics. Archives of Facial Plastic Surgery, 2011, 13, 305-310.	0.8	33
28	Virtual Surgery for the Nasal Airway. JAMA Facial Plastic Surgery, 2018, 20, 63-69.	2.2	32
29	Ideal Particle Sizes for Inhaled Steroids Targeting Vocal Granulomas: Preliminary Study Using Computational Fluid Dynamics. Otolaryngology - Head and Neck Surgery, 2018, 158, 511-519.	1.1	32
30	Virtual septoplasty: a method to predict surgical outcomes for patients with nasal airway obstruction. International Journal of Computer Assisted Radiology and Surgery, 2020, 15, 725-735.	1.7	32
31	Estimates of nasal airflow at the nasal cycle mid-point improve the correlation between objective and subjective measures of nasal patency. Respiratory Physiology and Neurobiology, 2017, 238, 23-32.	0.7	31
32	Sensitivity of nasal airflow variables computed via computational fluid dynamics to the computed tomography segmentation threshold. PLoS ONE, 2018, 13, e0207178.	1.1	31
33	Interspecific allometry of bone dimensions: A review of the theoretical models. Physics of Life Reviews, 2006, 3, 188-209.	1.5	29
34	Three-Dimensional Mapping of Ozone-Induced Injury in the Nasal Airways of Monkeys Using Magnetic Resonance Imaging and Morphometric Techniques. Toxicologic Pathology, 2007, 35, 27-40.	0.9	28
35	Impact of LVAD Implantation Site on Ventricular Blood Stagnation. ASAIO Journal, 2017, 63, 392-400.	0.9	28
36	Relationship between degree of obstruction and airflow limitation in subglottic stenosis. Laryngoscope, 2018, 128, 1551-1557.	1.1	27

#	Article	IF	CITATIONS
37	A hierarchical stepwise approach to evaluate nasal patency after virtual surgery for nasal airway obstruction. Clinical Biomechanics, 2019, 61, 172-180.	0.5	26
38	Upper airway reconstruction using longâ€range optical coherence tomography: Effects of airway curvature on airflow resistance. Lasers in Surgery and Medicine, 2019, 51, 150-160.	1.1	24
39	Large eddy simulations of airflow and particle deposition in pulsating bi-directional nasal drug delivery. Physics of Fluids, 2020, 32, .	1.6	24
40	Biophysical Model of Ion Transport across Human Respiratory Epithelia Allows Quantification of Ion Permeabilities. Biophysical Journal, 2013, 104, 716-726.	0.2	20
41	Creation of an idealized nasopharynx geometry for accurate computational fluid dynamics simulations of nasal airflow in patientâ€specific models lacking the nasopharynx anatomy. International Journal for Numerical Methods in Biomedical Engineering, 2017, 33, e2825.	1.0	20
42	Airflow limitation in a collapsible model of the human pharynx: physical mechanisms studied with fluidâ€structure interaction simulations and experiments. Physiological Reports, 2019, 7, e14099.	0.7	16
43	Rhinomanometry Versus Computational Fluid Dynamics: Correlated, but Different Techniques. American Journal of Rhinology and Allergy, 2021, 35, 245-255.	1.0	16
44	Long-bone allometry of terrestrial mammals and the geometric-shape and elastic-force constraints of bone evolution. Journal of Theoretical Biology, 2003, 224, 551-556.	0.8	13
45	The N-terminal Domain Allosterically Regulates Cleavage and Activation of the Epithelial Sodium Channel. Journal of Biological Chemistry, 2014, 289, 23029-23042.	1.6	12
46	A mechanochemical model for auto-regulation of lung airway surface layer volume. Journal of Theoretical Biology, 2013, 325, 42-51.	0.8	11
47	Advances in Technology for Functional Rhinoplasty. Facial Plastic Surgery Clinics of North America, 2017, 25, 263-270.	0.9	10
48	Novel Radiographic Assessment of the Cribriform Plate. American Journal of Rhinology and Allergy, 2018, 32, 175-180.	1.0	10
49	Clinical Importance of Nasal Air Conditioning: A Review of the Literature. American Journal of Rhinology and Allergy, 2019, 33, 763-769.	1.0	10
50	The scaling of maximum and basal metabolic rates of mammals and birds. Physica A: Statistical Mechanics and Its Applications, 2006, 359, 547-554.	1.2	9
51	Computational Model for the Regulation of Extracellular ATP and Adenosine in Airway Epithelia. Sub-Cellular Biochemistry, 2011, 55, 51-74.	1.0	9
52	Asymmetric dynamics and critical behavior in the Bak–Sneppen model. Physica A: Statistical Mechanics and Its Applications, 2004, 342, 516-528.	1.2	8
53	Narrowed Posterior Nasal Airway Limits Efficacy of Anterior Septoplasty. Facial Plastic Surgery and Aesthetic Medicine, 2021, 23, 13-20.	0.5	6
54	Effect of tube length on the buckling pressure of collapsible tubes. Computers in Biology and Medicine, 2021, 136, 104693.	3.9	6

#	Article	IF	CITATIONS
55	On singular probability densities generated by extremal dynamics. Physica A: Statistical Mechanics and Its Applications, 2004, 332, 318-336.	1.2	5
56	On the thresholds, probability densities, and critical exponents of Bak–Sneppen-like models. Physica A: Statistical Mechanics and Its Applications, 2004, 342, 164-170.	1.2	5
57	Radiologic changes in the aging nasal cavity. Rhinology, 2019, 57, 0-0.	0.7	5
58	Response to Dr Chung's Question on Simulating the Nasal Cycle with Computational Fluid Dynamics. Otolaryngology - Head and Neck Surgery, 2015, 153, 308-309.	1.1	4
59	The collapsing anatomical structure is not always the primary site of flow limitation in obstructive sleep apnea. Journal of Clinical Sleep Medicine, 2020, 16, 345-346.	1.4	4
60	Clinical Implications of Nasal Airflow Simulations. Biological and Medical Physics Series, 2021, , 157-192.	0.3	4
61	Absorbing-state phase transitions with extremal dynamics. Physical Review E, 2005, 71, 066113.	0.8	3
62	Visualization of nasal airflow patterns in a patient affected with atrophic rhinitis using particle image velocimetry. Journal of Physics: Conference Series, 2007, 85, 012032.	0.3	3
63	Effects of airway surface liquid height on the kinetics of extracellular nucleotides in airway epithelia. Journal of Theoretical Biology, 2014, 363, 427-435.	0.8	3
64	Toward automatic atlas-based surgical planning for septoplasty. International Journal of Computer Assisted Radiology and Surgery, 2022, 17, 403-411.	1.7	2
65	In reference to <i>Regional peak mucosal cooling predicts the perception of nasal patency</i> . Laryngoscope, 2014, 124, E210.	1.1	1
66	Simulating Airway Collapse in Obstructive Sleep Apnea Using Fluid-Structure Interaction Methodologies. , 2018, , .		1
67	lapdMouse: a data archive for advancing computational models of inhaled aerosol dosimetry. Journal of Applied Physiology, 2020, 128, 307-308.	1.2	1
68	0738 Clinical and Physiological Relevance of Computational Studies of Obstructive Sleep Apnea: A Systematic Literature Review. Sleep, 2022, 45, A322-A322.	0.6	0
69	0740 Correlation of Pharyngeal Critical Pressure with Upper Airway Anatomy in Obstructive Sleep Apnea: A Systematic Review. Sleep, 2022, 45, A323-A323.	0.6	0