Cristian Taccioli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8615193/publications.pdf

Version: 2024-02-01

73 papers

9,546 citations

32 h-index 64 g-index

80 all docs 80 docs citations

80 times ranked

14458 citing authors

#	Article	IF	CITATIONS
1	MicroRNA Signatures in Human Ovarian Cancer. Cancer Research, 2007, 67, 8699-8707.	0.4	1,356
2	MicroRNA Expression Patterns to Differentiate Pancreatic Adenocarcinoma From Normal Pancreas and Chronic Pancreatitis. JAMA - Journal of the American Medical Association, 2007, 297, 1901.	3.8	1,046
3	Relation between microRNA expression and progression and prognosis of gastric cancer: a microRNA expression analysis. Lancet Oncology, The, 2010, 11, 136-146.	5.1	752
4	MiR-15a and miR-16-1 cluster functions in human leukemia. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 5166-5171.	3.3	741
5	Ultraconserved Regions Encoding ncRNAs Are Altered in Human Leukemias and Carcinomas. Cancer Cell, 2007, 12, 215-229.	7.7	681
6	MicroRNAs regulate critical genes associated with multiple myeloma pathogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 12885-12890.	3.3	507
7	Reprogramming of miRNA networks in cancer and leukemia. Genome Research, 2010, 20, 589-599.	2.4	331
8	MicroRNA Cluster 221-222 and Estrogen Receptor \hat{l}_{\pm} Interactions in Breast Cancer. Journal of the National Cancer Institute, 2010, 102, 706-721.	3.0	301
9	MicroRNA signatures of TRAIL resistance in human non-small cell lung cancer. Oncogene, 2008, 27, 3845-3855.	2.6	275
10	Resveratrol decreases the levels of miR-155 by upregulating miR-663, a microRNA targeting JunB and JunD. Carcinogenesis, 2010, 31, 1561-1566.	1.3	241
11	Karyotype-specific microRNA signature in chronic lymphocytic leukemia. Blood, 2009, 114, 3872-3879.	0.6	179
12	Oncosuppressive role of p53â€induced miRâ€205 in triple negative breast cancer. Molecular Oncology, 2012, 6, 458-472.	2.1	142
13	Estrogen Mediated-Activation of miR-191/425 Cluster Modulates Tumorigenicity of Breast Cancer Cells Depending on Estrogen Receptor Status. PLoS Genetics, 2013, 9, e1003311.	1.5	139
14	Aberrant regulation of pVHL levels by microRNA promotes the HIF/VEGF axis in CLL B cells. Blood, 2009, 113, 5568-5574.	0.6	129
15	Generation of human memory stem T cells after haploidentical T-replete hematopoietic stem cell transplantation. Blood, 2015, 125, 2865-2874.	0.6	119
16	miR-181b is a biomarker of disease progression in chronic lymphocytic leukemia. Blood, 2011, 118, 3072-3079.	0.6	115
17	Hepatitis C Virus Proteins Modulate MicroRNA Expression and Chemosensitivity in Malignant Hepatocytes. Clinical Cancer Research, 2010, 16, 957-966.	3.2	108
18	Dysregulation of miR-31 and miR-21 induced by zinc deficiency promotes esophageal cancer. Carcinogenesis, 2012, 33, 1736-1744.	1.3	108

#	Article	IF	Citations
19	Metal Nanoparticles Released from Dental Implant Surfaces: Potential Contribution to Chronic Inflammation and Peri-Implant Bone Loss. Materials, 2019, 12, 2036.	1.3	96
20	Specific activation of microRNA106b enables the p73 apoptotic response in chronic lymphocytic leukemia by targeting the ubiquitin ligase Itch for degradation. Blood, 2009, 113, 3744-3753.	0.6	85
21	Dietary zinc deficiency fuels esophageal cancer development by inducing a distinct inflammatory signature. Oncogene, 2012, 31, 4550-4558.	2.6	74
22	Loss of miR-125b-1 contributes to head and neck cancer development by dysregulating TACSTD2 and MAPK pathway. Oncogene, 2014, 33, 702-712.	2.6	65
23	APTANI: a computational tool to select aptamers through sequence-structure motif analysis of HT-SELEX data. Bioinformatics, 2016, 32, 161-164.	1.8	55
24	MDP, a database linking drug response data to genomic information, identifies dasatinib and statins as a combinatorial strategy to inhibit YAP/TAZ in cancer cells. Oncotarget, 2015, 6, 38854-38865.	0.8	54
25	Transposable Elements Activity is Positively Related to Rate of Speciation in Mammals. Journal of Molecular Evolution, 2018, 86, 303-310.	0.8	50
26	Zinc Replenishment Reverses Overexpression of the Proinflammatory Mediator S100A8 and Esophageal Preneoplasia in the Rat. Gastroenterology, 2009, 136, 953-966.	0.6	44
27	UCbase & Direction with the Common Co	6.5	38
28	Zinc deficiency activates S100A8 inflammation in the absence of COXâ€2 and promotes murine oralâ€esophageal tumor progression. International Journal of Cancer, 2011, 129, 331-345.	2.3	36
29	Repression of Esophageal Neoplasia and Inflammatory Signaling by Anti-miR-31 Delivery In Vivo. Journal of the National Cancer Institute, 2015, 107, djv220.	3.0	35
30	miRNAs Expression Analysis in Paired Fresh/Frozen and Dissected Formalin Fixed and Paraffin Embedded Glioblastoma Using Real-Time PCR. PLoS ONE, 2012, 7, e35596.	1.1	34
31	GAM/ZFp/ZNF512B is central to a gene sensor circuitry involving cell-cycle regulators, TGFβ effectors, Drosha and microRNAs with opposite oncogenic potentials. Nucleic Acids Research, 2010, 38, 7673-7688.	6.5	32
32	Domestication reprogrammed the budding yeast life cycle. Nature Ecology and Evolution, 2022, 6, 448-460.	3.4	32
33	ParkDB: a Parkinson's disease gene expression database. Database: the Journal of Biological Databases and Curation, 2011, 2011, bar007-bar007.	1.4	28
34	MicroRNA dysregulation and esophageal cancer development depend on the extent of zinc dietary deficiency. Oncotarget, 2016, 7, 10723-10738.	0.8	27
35	MicroRNA Profiles of Drug-Resistant Myeloma Cell Lines. Acta Haematologica, 2010, 123, 201-204.	0.7	25
36	Differences in local population history at the finest level: the case of the Estonian population. European Journal of Human Genetics, 2020, 28, 1580-1591.	1.4	23

#	Article	IF	CITATIONS
37	Definition of miRNAs Expression Profile in Glioblastoma Samples: The Relevance of Non-Neoplastic Brain Reference. PLoS ONE, 2013, 8, e55314.	1.1	22
38	Comparison of machine learning methods to predict udder health status based on somatic cell counts in dairy cows. Scientific Reports, 2021, 11, 13642.	1.6	22
39	UCbase 2.0: ultraconserved sequences database (2014 update). Database: the Journal of Biological Databases and Curation, 2014, 2014, bau062-bau062.	1.4	19
40	Human-like hyperplastic prostate with low ZIP1 induced solely by Zn deficiency in rats. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E11091-E11100.	3.3	19
41	Abrogation of esophageal carcinoma development in miR-31 knockout rats. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6075-6085.	3.3	19
42	Impact of non-LTR retrotransposons in the differentiation and evolution of anatomically modern humans. Mobile DNA, 2018, 9, 28.	1.3	18
43	An Ultraconserved Element Containing IncRNA Preserves Transcriptional Dynamics and Maintains ESC Self-Renewal. Stem Cell Reports, 2018, 10, 1102-1114.	2.3	17
44	DNA sequence symmetries from randomness: the origin of the Chargaff's second parity rule. Briefings in Bioinformatics, 2021, 22, 2172-2181.	3.2	16
45	Compatible solutes from hyperthermophiles improve the quality of DNA microarrays. BMC Biotechnology, 2007, 7, 82.	1.7	14
46	Integration of metabolomics, transcriptomics, and microRNA expression profiling reveals a miR-143-HK2-glucose network underlying zinc-deficiency-associated esophageal neoplasia. Oncotarget, 2017, 8, 81910-81925.	0.8	14
47	The role of p19 and p21 H-Ras proteins and mutants in miRNA expression in cancer and a Costello syndrome cell model. BMC Medical Genetics, 2015, 16, 46.	2.1	13
48	BRCA1 5083del19 Mutant Allele Selectively Up-Regulates Periostin Expression <i>In vitro</i> and <i>In vivo</i> Clinical Cancer Research, 2008, 14, 6797-6803.	3.2	12
49	A retrotransposon storm marks clinical phenoconversion to late-onset Alzheimer's disease. GeroScience, 2022, 44, 1525-1550.	2.1	12
50	A LIF/Nanog axis is revealed in T lymphocytes that lack MARCH-7, a RINGv E3 ligase that regulates the LIF-receptor. Cell Cycle, 2010, 9, 4213-4221.	1.3	10
51	Successful extraction of insect DNA from recent copal inclusions: limits and perspectives. Scientific Reports, 2021, 11, 6851.	1.6	6
52	Dysregulation of Transglutaminase type 2 through GATA3 defines aggressiveness and Doxorubicin sensitivity in breast cancer. International Journal of Biological Sciences, 2022, 18, 1-14.	2.6	6
53	A Novel 4-anilino-3-quinolinecarbonitrile Dual Src and Abl Kinase Inhibitor (SKI-606) Has In Vitro Activity on CML Ph+Blast Cells Resistant to Imatinib Blood, 2004, 104, 1991-1991.	0.6	5
54	miRNAs Copy Number Variations Repertoire as Hallmark Indicator of Cancer Species Predisposition. Genes, 2022, 13, 1046.	1.0	5

#	Article	IF	CITATIONS
55	A New Abl Kinase Inhibitor (AMN107) Has In Vitro Activity on CML Ph+Blast Cells Resistant to Imatinib Blood, 2004, 104, 4687-4687.	0.6	4
56	Visual Exploratory Data Analysis for Copy Number Variation Studies in Biomedical Research. Big Data Research, 2022, 27, 100298.	2.6	4
57	InstaCircos: a Web Application for Fast and Interactive Circular Visualization of Large Genomic Data (Work in Progress). , 2020, , .		2
58	VarCopy: a Visual Exploratory Data Analysis Platform for Copy Number Variation Studies., 2020,,.		2
59	Circulating microRNAs Suggest Networks Associated with Biological Functions in Aggressive Refractory Type 2 Celiac Disease. Biomedicines, 2022, 10, 1408.	1.4	2
60	Machine Learning Algorithms Highlight tRNA Information Content and Chargaff's Second Parity Rule Score as Important Features in Discriminating Probiotics from Non-Probiotics. Biology, 2022, 11, 1024.	1.3	2
61	GMIEC: a shiny application for the identification of gene-targeted drugs for precision medicine. BMC Genomics, 2020, 21, 619.	1.2	1
62	Inhibition of the IncRNA Coded within Transglutaminase 2 Gene Impacts Several Relevant Networks in MCF-7 Breast Cancer Cells. Non-coding RNA, 2021, 7, 49.	1.3	1
63	Gene Expression Profile in the CML Cell Line K562 Treated with SKI-606, a Dual Inhibitor of Src/Abl Kinase Blood, 2005, 106, 4870-4870.	0.6	1
64	249 ORAL Specific activation of microRNA 106b targets the ubiquitin ligase ITCH to enable the p73 apoptotic response in chronic lymphocytic leukemia. European Journal of Cancer, Supplement, 2008, 6, 82.	2.2	0
65	Mutations and Drugs Portal (MDP): A Database Linking Drug Response Data and Genomic Information. , 2016, , .		0
66	The Non-Coding RNA Journal Club: Highlights on Recent Papers-8. Non-coding RNA, 2021, 7, 23.	1.3	0
67	Elevated HIF-1α Levels in CLL B Cells May Explain Their Autocrine VEGF Secretion Blood, 2006, 108, 583-583.	0.6	O
68	p53-Inducible Micrornas 192 and 215 Regulate p53 Expression and IGF1 Axis in Multiple Myeloma Blood, 2009, 114, 1973-1973.	0.6	0
69	Abstract 3011: MicroRNA expression profiles in benign and aggressive canine mast cell tumors. , 2010, , .		0
70	Abstract 4051: MiR-181b expression levels decreases during the progression of the Chronic Lymphocytic Leukemia: a new potential prognostic tool., 2010,,.		0
71	Abstract 2089: MiR-205 role in triple negative breast cancer. , 2010, , .		0
72	Abstract LB-241: Silencing of microRNA-31 prevents esophageal neoplasia in zinc deficient rats, 2013,,.		0

#	Article	IF	CITATIONS
73	Revealing the Generation of Human Memory Stem T Cells in Haploidentical T-Replete Hematopoietic Stem Cell Transplantation. Blood, 2014, 124, 192-192.	0.6	O