
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8614712/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Transcriptomic analysis in zebrafish larvae identifies iron-dependent mitochondrial dysfunction as a possible key event of NAFLD progression induced by benzo[a]pyrene/ethanol co-exposure. Cell Biology and Toxicology, 2023, 39, 371-390.	2.4	7
2	Role of Mitochondrial Cytochrome P450 2E1 in Healthy and Diseased Liver. Cells, 2022, 11, 288.	1.8	34
3	Xenobiotic-Induced Aggravation of Metabolic-Associated Fatty Liver Disease. International Journal of Molecular Sciences, 2022, 23, 1062.	1.8	19
4	Acetaminophen (APAP, Paracetamol) Interferes With the First Trimester Human Fetal Ovary Development in an Ex Vivo Model. Journal of Clinical Endocrinology and Metabolism, 2022, 107, 1647-1661.	1.8	5
5	Beneficial effects of citrulline enteral administration on sepsis-induced T cell mitochondrial dysfunction. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	13
6	Molecular Networking for Drug Toxicities Studies: The Case of Hydroxychloroquine in COVID-19 Patients. International Journal of Molecular Sciences, 2022, 23, 82.	1.8	11
7	Drug-induced hepatic steatosis in absence of severe mitochondrial dysfunction in HepaRG cells: proof of multiple mechanism-based toxicity. Cell Biology and Toxicology, 2021, 37, 151-175.	2.4	24
8	Cytochrome P450 2E1 should not be neglected for acetaminophen-induced liver injury in metabolic diseases with altered insulin levels or glucose homeostasis. Clinics and Research in Hepatology and Gastroenterology, 2021, 45, 101470.	0.7	12
9	Multikinase inhibitor-induced liver injury in patients with cancer: A review for clinicians. Critical Reviews in Oncology/Hematology, 2021, 157, 103127.	2.0	8
10	Advanced preclinical models for evaluation of drug-induced liver injury – consensus statement by the European Drug-Induced Liver Injury Network [PRO-EURO-DILI-NET]. Journal of Hepatology, 2021, 75, 935-959.	1.8	66
11	Moderate chronic ethanol consumption exerts beneficial effects on nonalcoholic fatty liver in mice fed a high-fat diet: possible role of higher formation of triglycerides enriched in monounsaturated fatty acids. European Journal of Nutrition, 2020, 59, 1619-1632.	1.8	10
12	Alteration of mitochondrial DNA homeostasis in drug-induced liver injury. Food and Chemical Toxicology, 2020, 135, 110916.	1.8	33
13	Letter to the Editor Regarding the Article Rotenone Increases Isoniazid Toxicity but Does Not Cause Significant Liver Injury: Implications for the Hypothesis that Inhibition of the Mitochondrial Electron Transport Chain Is a Common Mechanism of Idiosyncratic Drug-Induced Liver Injury by Cho and Co-Workers. 2019. Chemical Research in Toxicology. 2020. 33. 2-4.	1.7	2
14	Treatments in Covid-19 patients with pre-existing metabolic dysfunction-associated fatty liver disease: A potential threat for drug-induced liver injury?. Biochimie, 2020, 179, 266-274.	1.3	37
15	The GOLIATH Project: Towards an Internationally Harmonised Approach for Testing Metabolism Disrupting Compounds. International Journal of Molecular Sciences, 2020, 21, 3480.	1.8	35
16	Fatal acetaminophen poisoning with hepatic microvesicular steatosis in a child after repeated administration of therapeutic doses. Forensic Science International, 2020, 310, 110258.	1.3	10
17	Non-oxidative ethanol metabolism in human hepatic cells in vitro: Involvement of uridine diphospho-glucuronosyltransferase 1A9 in ethylglucuronide production. Toxicology in Vitro, 2020, 66, 104842.	1.1	12
18	Large-Scale Modeling Approach Reveals Functional Metabolic Shifts during Hepatic Differentiation. Journal of Proteome Research, 2019, 18, 204-216.	1.8	6

#	Article	IF	CITATIONS
19	Inhibition of mitochondrial fatty acid oxidation in drug-induced hepatic steatosis. Liver Research, 2019, 3, 157-169.	0.5	22
20	Polycyclic Aromatic Hydrocarbons Can Trigger Hepatocyte Release of Extracellular Vesicles by Various Mechanisms of Action Depending on Their Affinity for the Aryl Hydrocarbon Receptor. Toxicological Sciences, 2019, 171, 443-462.	1.4	18
21	Mitochondrial Dysfunction Induced by Xenobiotics: Involvement in Steatosis and Steatohepatitis. , 2019, , 347-364.		1
22	Retrodifferentiation of Human Tumor Hepatocytes to Stem Cells Leads to Metabolic Reprogramming and Chemoresistance. Cancer Research, 2019, 79, 1869-1883.	0.4	39
23	Drug-induced liver injury in obesity and nonalcoholic fatty liver disease. Advances in Pharmacology, 2019, 85, 75-107.	1.2	66
24	Drug-Induced Alterations of Mitochondrial DNA Homeostasis in Steatotic and Nonsteatotic HepaRG Cells. Journal of Pharmacology and Experimental Therapeutics, 2018, 365, 711-726.	1.3	25
25	Drug-Induced Mitochondrial Toxicity. , 2018, , 269-295.		4
26	In Vitro Assessment of Mitochondrial Toxicity to Predict Drug-Induced Liver Injury. Methods in Pharmacology and Toxicology, 2018, , 283-300.	0.1	4
27	Mechanisms involved in the death of steatotic WIF-B9 hepatocytes co-exposed to benzo[a]pyrene and ethanol: a possible key role for xenobiotic metabolism and nitric oxide. Free Radical Biology and Medicine, 2018, 129, 323-337.	1.3	8
28	Possible Involvement of Mitochondrial Dysfunction and Oxidative Stress in a Cellular Model of NAFLD Progression Induced by Benzo[a]pyrene/Ethanol CoExposure. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-18.	1.9	32
29	Co-exposure to benzo[a]pyrene and ethanol induces a pathological progression of liver steatosis in vitro and in vivo. Scientific Reports, 2018, 8, 5963.	1.6	36
30	Bisphenol a induces steatosis in HepaRG cells using a model of perinatal exposure. Environmental Toxicology, 2017, 32, 1024-1036.	2.1	21
31	Gamma-glutamyltransferase, fatty liver index and hepatic insulin resistance are associated with incident hypertension in two longitudinal studies. Journal of Hypertension, 2017, 35, 493-500.	0.3	57
32	Benzo[a]pyrene and ethanol exert a high toxicity potential in steatotic HepaRG cells: possible role of low NDUFA4L2 expression. Journal of Hepatology, 2017, 66, S402.	1.8	0
33	Drug-induced effects on mtDNA homeostasis in HepaRG cells and modulation by steatosis. Journal of Hepatology, 2017, 66, S397.	1.8	Ο
34	Chronic and low exposure to a pharmaceutical cocktail induces mitochondrial dysfunction in liver and hyperglycemia: Differential responses between lean and obese mice. Environmental Toxicology, 2017, 32, 1375-1389.	2.1	13
35	Role of nonalcoholic fatty liver disease as risk factor for drug-induced hepatotoxicity. Journal of Clinical and Translational Research, 2017, 3, 212-232.	0.3	85
36	The effect of water suppression on the hepatic lipid quantification, as assessed by the LCModel, in a preclinical and clinical scenario. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2016, 29, 29-37.	1.1	2

#	Article	IF	CITATIONS
37	Role of endoplasmic reticulum stress in drugâ€induced toxicity. Pharmacology Research and Perspectives, 2016, 4, e00211.	1.1	179
38	Mid-infrared fibre evanescent wave spectroscopy of serum allows fingerprinting of the hepatic metabolic status in mice. Analyst, The, 2016, 141, 6259-6269.	1.7	5
39	A cellular model to study drug-induced liver injury in nonalcoholic fatty liver disease: Application to acetaminophen. Toxicology and Applied Pharmacology, 2016, 292, 40-55.	1.3	53
40	Indicators of iron status are correlated with adiponectin expression in adipose tissue of patients with morbid obesity. Diabetes and Metabolism, 2016, 42, 105-111.	1.4	15
41	Oxidative stress promotes pathologic polyploidization in nonalcoholic fatty liver disease. Journal of Clinical Investigation, 2015, 125, 981-992.	3.9	188
42	The Role of Autophagy and Mitophagy in Liver Diseases. , 2015, , 240-263.		2
43	Chronic exposure to low doses of pharmaceuticals disturbs the hepatic expression of circadian genes in lean and obese mice. Toxicology and Applied Pharmacology, 2014, 276, 63-72.	1.3	12
44	Modulation of Metabolizing Enzymes by Bisphenol A in Human and Animal Models. Chemical Research in Toxicology, 2014, 27, 1463-1473.	1.7	32
45	Acetaminophenâ€induced liver injury in obesity and nonalcoholic fatty liver disease. Liver International, 2014, 34, e171-9.	1.9	115
46	Burn after feeding. An old uncoupler of oxidative phosphorylation is redesigned for the treatment of nonalcoholic fatty liver disease. Clinics and Research in Hepatology and Gastroenterology, 2014, 38, 545-549.	0.7	2
47	Mitochondrial adaptations and dysfunctions in nonalcoholic fatty liver disease. Hepatology, 2013, 58, 1497-1507.	3.6	454
48	Fat accretion in a subpopulation of hepatocytes as a strategy to protect the whole liver against oxidative stress and lipotoxicity. Clinics and Research in Hepatology and Gastroenterology, 2013, 37, 553-555.	0.7	4
49	Bridging the gap between old and new concepts in drug-induced liver injury. Clinics and Research in Hepatology and Gastroenterology, 2013, 37, 6-9.	0.7	5
50	Drug-induced liver injury in obesity. Journal of Hepatology, 2013, 58, 824-826.	1.8	83
51	Drug-Induced Inhibition of Mitochondrial Fatty Acid Oxidation and Steatosis. Current Pathobiology Reports, 2013, 1, 147-157.	1.6	37
52	Oxidative stress plays a major role in chlorpromazine-induced cholestasis in human HepaRG cells. Hepatology, 2013, 57, 1518-1529.	3.6	107
53	Quantitative Analysis of Acetaminophen and its Primary Metabolites in Small Plasma Volumes by Liquid Chromatography-Tandem Mass Spectrometry. Journal of Analytical Toxicology, 2013, 37, 110-116.	1.7	37
54	Prediction of Liver Injury Induced by Chemicals in Human With a Multiparametric Assay on Isolated Mouse Liver Mitochondria. Toxicological Sciences, 2012, 129, 332-345.	1.4	159

#	Article	IF	CITATIONS
55	Carbon tetrachloride-mediated lipid peroxidation induces early mitochondrial alterations in mouse liver. Laboratory Investigation, 2012, 92, 396-410.	1.7	92
56	Central role of mitochondria in drug-induced liver injury. Drug Metabolism Reviews, 2012, 44, 34-87.	1.5	228
57	Differences in Early Acetaminophen Hepatotoxicity between Obese <i>ob/ob</i> and <i>db/db</i> Mice. Journal of Pharmacology and Experimental Therapeutics, 2012, 342, 676-687.	1.3	60
58	Regulation of hepatic mitochondrial metabolism in response to a high fat diet: a longitudinal study in rats. Journal of Physiology and Biochemistry, 2012, 68, 335-344.	1.3	27
59	Pentoxifylline aggravates fatty liver in obese and diabetic <i>ob/ob</i> mice by increasing intestinal glucose absorption and activating hepatic lipogenesis. British Journal of Pharmacology, 2012, 165, 1361-1374.	2.7	29
60	Increased expression of cytochrome P450 2E1 in nonalcoholic fatty liver disease: Mechanisms and pathophysiological role. Clinics and Research in Hepatology and Gastroenterology, 2011, 35, 630-637.	0.7	232
61	Increased Susceptibility to Liver Fibrosis with Age Is Correlated with an Altered Inflammatory Response. Rejuvenation Research, 2011, 14, 353-363.	0.9	40
62	Drug-induced toxicity on mitochondria and lipid metabolism: Mechanistic diversity and deleterious consequences for the liver. Journal of Hepatology, 2011, 54, 773-794.	1.8	450
63	Mitochondrial CYP2E1 is sufficient to mediate oxidative stress and cytotoxicity induced by ethanol and acetaminophen. Toxicology in Vitro, 2011, 25, 475-484.	1.1	59
64	Pathology of the liver in obese and diabetic ob/ob and db/db mice fed a standard or high-calorie diet. International Journal of Experimental Pathology, 2011, 92, 413-421.	0.6	116
65	Mechanisms of mitochondrial targeting of cytochrome P450 2E1: physiopathological role in liver injury and obesity. FEBS Journal, 2011, 278, 4252-4260.	2.2	85
66	Overexpression of Bcl-2 in hepatocytes protects against injury but does not attenuate fibrosis in a mouse model of chronic cholestatic liver disease. Laboratory Investigation, 2011, 91, 273-282.	1.7	21
67	Induction of vesicular steatosis by amiodarone and tetracycline is associated with upâ€regulation of lipogenic genes in heparg cells. Hepatology, 2011, 53, 1895-1905.	3.6	137
68	Effects of βâ€∎minoisobutyric acid on leptin production and lipid homeostasis: mechanisms and possible relevance for the prevention of obesity. Fundamental and Clinical Pharmacology, 2010, 24, 269-282.	1.0	28
69	MnSOD Overexpression Prevents Liver Mitochondrial DNA Depletion after an Alcohol Binge but Worsens This Effect after Prolonged Alcohol Consumption in Mice. Digestive Diseases, 2010, 28, 756-775.	0.8	22
70	Hepatic Mitochondrial DNA Depletion after an Alcohol Binge in Mice: Probable Role of Peroxynitrite and Modulation by Manganese Superoxide Dismutase. Journal of Pharmacology and Experimental Therapeutics, 2010, 332, 886-897.	1.3	56
71	Mitochondrial Involvement in Drug-Induced Liver Injury. Handbook of Experimental Pharmacology, 2010, , 311-365.	0.9	107
72	Chronic Ethanol Consumption Lessens the Gain of Body Weight, Liver Triglycerides, and Diabetes in Obese ob/ob Mice. Journal of Pharmacology and Experimental Therapeutics, 2009, 331, 23-34.	1.3	43

BERNARD FROMENTY

#	Article	IF	CITATIONS
73	Prolonged ethanol administration depletes mitochondrial DNA in MnSOD-overexpressing transgenic mice, but not in their wild type littermates. Toxicology and Applied Pharmacology, 2009, 234, 326-338.	1.3	34
74	Mitochondrial dysfunction in nonalcoholic steatohepatitis (NASH): are there drugs able to improve it?. Drug Discovery Today Disease Mechanisms, 2009, 6, e11-e23.	0.8	18
75	Protection against Hepatocyte Mitochondrial Dysfunction Delays Fibrosis Progression in Mice. American Journal of Pathology, 2009, 175, 1929-1937.	1.9	57
76	βâ€Aminoisobutyric Acid Prevents Dietâ€induced Obesity in Mice With Partial Leptin Deficiency. Obesity, 2008, 16, 2053-2067.	1.5	77
77	Drugâ€induced liver injury through mitochondrial dysfunction: mechanisms and detection during preclinical safety studies. Fundamental and Clinical Pharmacology, 2008, 22, 335-353.	1.0	251
78	High concentrations of stavudine impair fatty acid oxidation without depleting mitochondrial DNA in cultured rat hepatocytes. Toxicology in Vitro, 2008, 22, 887-898.	1.1	36
79	Partial leptin deficiency favors diet-induced obesity and related metabolic disorders in mice. American Journal of Physiology - Endocrinology and Metabolism, 2008, 294, E939-E951.	1.8	38
80	High hepatic glutathione stores alleviate Fas-induced apoptosis in mice. Journal of Hepatology, 2007, 46, 858-868.	1.8	42
81	[721] OVEREXPRESSION OF MANGANESE SUPEROXIDE DISMUTASE TRIGGERS MITOCHONDRIA!. DAMAGE AFTER CHRONIC ALCOHOL INTOXICATION IN MOUSE LIVER. Journal of Hepatology, 2007, 46, S272.	1.8	1
82	Tamoxifen Inhibits Topoisomerases, Depletes Mitochondrial DNA, and Triggers Steatosis in Mouse Liver. Journal of Pharmacology and Experimental Therapeutics, 2007, 321, 526-535.	1.3	131
83	High Doses of Stavudine Induce Fat Wasting and Mild Liver Damage without Impairing Mitochondrial Respiration in Mice. Antiviral Therapy, 2007, 12, 389-400.	0.6	25
84	693 Manganese superoxide dismutase overexpression protects against hepatic mitochondrial dna depletion after an acute alcohol binge, yet aggravates mitochondrial DNA depletion after chronic alcohol intoxication in mice. Journal of Hepatology, 2006, 44, S255-S256.	1.8	0
85	711 Pentoxifylline protects genetically obese mice from ethanol-induced hepatic apoptosis. Journal of Hepatology, 2006, 44, S261-S262.	1.8	Ο
86	712 Ethanol increases mitochondrial cytochrome P450 2E1 in mouse liver and rat hepatocytes. Journal of Hepatology, 2006, 44, S262.	1.8	0
87	Mitochondrial dysfunction in NASH: Causes, consequences and possible means to prevent it. Mitochondrion, 2006, 6, 1-28.	1.6	615
88	Mitochondrial, Metabolic and Genotoxic Effects of Antiretroviral Nucleoside Reverse-Transcriptase Inhibitors. Anti-Infective Agents in Medicinal Chemistry, 2006, 5, 273-292.	0.6	26
89	Alcohol increases tumor necrosis factor α and decreases nuclear factor-κb to activate hepatic apoptosis in genetically obese mice. Hepatology, 2005, 42, 1280-1290.	3.6	72
90	NASH: a mitochondrial disease. Journal of Hepatology, 2005, 42, 928-940.	1.8	372

#	Article	IF	CITATIONS
91	Ethanol increases mitochondrial cytochrome P450 2E1 in mouse liver and rat hepatocytes. FEBS Letters, 2005, 579, 6895-6902.	1.3	81
92	Mitochondria are sensors for HIV drugs. Trends in Pharmacological Sciences, 2005, 26, 258-264.	4.0	33
93	The ins and outs of mitochondrial dysfunction in NASH. Diabetes and Metabolism, 2004, 30, 121-138.	1.4	241
94	Mitochondrial injury in steatohepatitis. European Journal of Gastroenterology and Hepatology, 2004, 16, 1095-1105.	0.8	132
95	Adipocytes targets and actors in the pathogenesis of HIV-associated lipodystrophy and metabolic alterations. Antiviral Therapy, 2004, 9, 161-77.	0.6	34
96	Adipocytes Targets and Actors in the Pathogenesis of HIV-Associated Lipodystrophy and Metabolic Alterations. Antiviral Therapy, 2004, 9, 161-177.	0.6	114
97	Effects of Zidovudine, Stavudine and β-Aminoisobutyric Acid on Lipid Homeostasis in Mice: Possible Role in Human Fat Wasting. Antiviral Therapy, 2004, 9, 801-810.	0.6	37
98	Inhibition of microsomal triglyceride transfer protein: Another mechanism for drug-induced steatosis in mice. Hepatology, 2003, 38, 133-140.	3.6	158
99	Fulminant hepatitis after grand mal seizures: Mechanisms and role of liver transplantation. Hepatology, 2003, 38, 443-451.	3.6	17
100	Tacrine inhibits topoisomerases and DNA synthesis to cause mitochondrial DNA depletion and apoptosis in mouse liver. Hepatology, 2003, 38, 715-725.	3.6	64
101	Inhibition of microsomal triglyceride transfer protein (MTP) and hepatic lipoprotein secretion: Another important mechanism for drug-induced steatosis. Journal of Hepatology, 2003, 38, 30.	1.8	0
102	Mitochondrial and Metabolic Effects of Nucleoside Reverse Transcriptase Inhibitors (NRTIs) in Mice Receiving One of Five Single- and Three Dual-NRTI Treatments. Antimicrobial Agents and Chemotherapy, 2003, 47, 3384-3392.	1.4	40
103	V. Mitochondrial dysfunction in steatohepatitis. American Journal of Physiology - Renal Physiology, 2002, 282, G193-G199.	1.6	227
104	Impaired adaptive resynthesis and prolonged depletion of hepatic mitochondrial DNA after repeated alcohol binges in mice. Gastroenterology, 2002, 123, 1278-1290.	0.6	135
105	Drug-Induced Microvesicular Steatosis and Steatohepatitis. , 2002, , 489-517.		2
106	Effects of Alcohol and Oxidative Stress on Liver Pathology: The Role of the Mitochondrion. Alcoholism: Clinical and Experimental Research, 2002, 26, 907-915.	1.4	121
107	Effects of Alcohol and Oxidative Stress on Liver Pathology: The Role of the Mitochondrion. Alcoholism: Clinical and Experimental Research, 2002, 26, 907-915.	1.4	2
108	Effects of alcohol and oxidative stress on liver pathology: the role of the mitochondrion. Alcoholism: Clinical and Experimental Research, 2002, 26, 907-15.	1.4	43

#	Article	IF	CITATIONS
109	Homozygosity for alanine in the mitochondrial targeting sequence of superoxide dismutase and risk for severe alcoholic liver disease. Gastroenterology, 2001, 120, 1468-1474.	0.6	113
110	Mitochondria in Steatohepatitis. Seminars in Liver Disease, 2001, 21, 057-070.	1.8	321
111	Hepatotoxicity due to mitochondrial dysfunction. Cell Biology and Toxicology, 1999, 15, 367-373.	2.4	232
112	An alcoholic binge causes massive degradation of hepatic mitochondrial DNA in mice. Gastroenterology, 1999, 117, 181-190.	0.6	176
113	PREMATURE OXIDATIVE DAMAGE TO HEPATIC MITOCHONDRIAL DNA IN ALCOHOLIC PATIENTS WITH MICROVESICULAR STEATOSIS. Alcoholism: Clinical and Experimental Research, 1998, 22, 755-756.	1.4	0
114	Steatohepatitis-inducing drugs cause mitochondrial dysfunction and lipid peroxidation in rat hepatocytes. Gastroenterology, 1998, 114, 764-774.	0.6	356
115	Multiple mtDNA deletions features in autosomal dominant and recessive diseases suggest distinct pathogeneses. Neurology, 1998, 50, 99-106.	1.5	81
116	Premature oxidative aging of hepatic mitochondrial DNA in Wilson's disease. Gastroenterology, 1997, 113, 599-605.	0.6	106
117	Multiple hepatic mitochondrial DNA deletions suggest premature oxidative aging in alcoholic patients. Journal of Hepatology, 1997, 27, 96-102.	1.8	137
118	Impaired mitochondrial function in microvesicular steatosis effects of drugs, ethanol, hormones and cytokines. Journal of Hepatology, 1997, 26, 43-53.	1.8	249
119	Microvesicular steatosis and steatohepatitis: role of mitochondrial dysfunction and lipid peroxidation. Journal of Hepatology, 1997, 26, 13-22.	1.8	153
120	High proportions of mtDNA duplications in patients with Kearns-Sayre syndrome occur in the heart. , 1997, 71, 443-452.		30
121	Cell-generated nitric oxide inactivates rat hepatocyte mitochondria in vitro but reacts with hemoglobin in vivo. Gastroenterology, 1996, 110, 210-220.	0.6	39
122	Uncoupling of rat and human mitochondria: A possible explanation for tacrine-induced liver dysfunction. Gastroenterology, 1996, 110, 1878-1890.	0.6	65
123	Most cases of medium-chain acyl-CoA dehydrogenase deficiency escape detection in France. Human Genetics, 1996, 97, 367-368.	1.8	28
124	Acute and chronic hepatic steatosis lead to in vivo lipid peroxidation in mice. Journal of Hepatology, 1996, 24, 200-208.	1.8	257
125	Assessment of the prevalence of genetic metabolic defects in acute fatty liver of pregnancy. Journal of Hepatology, 1996, 25, 781.	1.8	38
126	Efficient and specific amplification of identified partial duplications of human mitochondrial DNA by long PCR. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1996, 1308, 222-230.	2.4	30

BERNARD FROMENTY

#	Article	IF	CITATIONS
127	Inhibition of mitochondrial beta-oxidation as a mechanism of hepatotoxicity. , 1995, 67, 101-154.		589
128	Hepatic mitochondrial DNA deletion in alcoholics: Association with microvesicular steatosis. Gastroenterology, 1995, 108, 193-200.	0.6	144
129	Inhibition by perhexiline of oxidative phosphorylation and the β-oxidation of fatty acids: Possible role in pseudoalcoholic liver lesions. Hepatology, 1994, 19, 948-961.	3.6	106
130	Possible role of HLA in hepatotoxicity. Journal of Hepatology, 1994, 20, 336-342.	1.8	81
131	Inhibition by perhexiline of oxidative phosphorylation and the β-oxidation of fatty acids: Possible role in pseudoalcoholic liver lesions. Hepatology, 1994, 19, 948-961.	3.6	9
132	Mitochondrial DNA deletion in alcohol-induced microvesicular steatosis. Hepatology, 1994, 19, 164.	3.6	0
133	Decreased mitochondrial oxidation of fatty acids in pregnant mice: Possible relevance to development of acute fatty liver of pregnancy. Hepatology, 1993, 17, 628-637.	3.6	79
134	Evaluation of human blood lymphocytes as a model to study the effects of drugs on human mitochondria. Biochemical Pharmacology, 1993, 46, 421-432.	2.0	51
135	Increased ethane exhalation, an in vivo index of lipid peroxidation, in alcohol-abusers Gut, 1993, 34, 409-414.	6.1	87
136	Generation of free radicals during the reductive metabolism of nilutamide by lung microsomes: Possible role in the development of lung lesions in patients treated with this anti-androgen. Biochemical Pharmacology, 1992, 43, 654-657.	2.0	18
137	Effects of various tetracycline derivatives on in vitro and in vivo β-oxidation of fatty acids, egress of triglycerides from the liver, accumulation of hepatic triglycerides, and mortality in mice. Biochemical Pharmacology, 1991, 41, 638-641.	2.0	41
138	Mechanism for the protective effects of silymarin against carbon tetrachloride-induced lipid peroxidation and hepatotoxicity in mice. Biochemical Pharmacology, 1990, 39, 2027-2034.	2.0	221
139	Manipulation of antipeptide immune response by varying the coupling of the peptide with the carrier protein. Molecular Immunology, 1989, 26, 81-85.	1.0	63
140	Tianeptine, a new tricyclic antidepressant metabolized by β-oxidation of its heptanoic side chain, inhibits the mitochondrial oxidation of medium and short chain fatty acids in mice. Biochemical Pharmacology, 1989, 38, 3743-3751.	2.0	61