Steven J Sandler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8614539/publications.pdf

Version: 2024-02-01

		186265	168389	
55	3,882	28	53	
papers	citations	h-index	g-index	
55	55	55	2253	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	Citations
1	Positive Charges Are Important for the SOS Constitutive Phenotype in <i>recA730</i> and <i>recA1202</i> Mutants of Escherichia coli K-12. Journal of Bacteriology, 2022, 204, e0008122.	2.2	1
2	Escherichia coli Kâ€12 has two distinguishable PriAâ€PriB replication restart pathways. Molecular Microbiology, 2021, 116, 1140-1150.	2.5	9
3	An Epistasis Analysis of <i>recA</i> and <i>recN</i> in <i>Escherichia coli</i> K-12. Genetics, 2020, 216, 381-393.	2.9	7
4	Mutational Analysis of Residues in PriA and PriC Affecting Their Ability To Interact with SSB in Escherichia coli K-12. Journal of Bacteriology, 2020, 202, .	2.2	4
5	Interaction with singleâ€stranded DNAâ€binding protein localizes ribonuclease HI to DNA replication forks and facilitates Râ€loop removal. Molecular Microbiology, 2020, 114, 495-509.	2.5	14
6	Development of a single-stranded DNA-binding protein fluorescent fusion toolbox. Nucleic Acids Research, 2020, 48, 6053-6067.	14.5	16
7	Function of a strand-separation pin element in the PriA DNA replication restart helicase. Journal of Biological Chemistry, 2019, 294, 2801-5614.	3.4	19
8	Proteaseâ€deficient SOS constitutive cells have RecNâ€dependent cell division phenotypes. Molecular Microbiology, 2019, 111, 405-422.	2.5	9
9	Stress-Induced Reorganization of the Mycobacterial Membrane Domain. MBio, 2018, 9, .	4.1	50
10	Structure-specific DNA replication-fork recognition directs helicase and replication restart activities of the PriA helicase. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E9075-E9084.	7.1	30
11	Significance of a Posttranslational Modification of the PilA Protein of Geobacter sulfurreducens for Surface Attachment, Biofilm Formation, and Growth on Insoluble Extracellular Electron Acceptors. Journal of Bacteriology, 2017, 199, .	2.2	18
12	Replication Restart in Bacteria. Journal of Bacteriology, 2017, 199, .	2.2	53
13	A <i>priA</i> Mutant Expressed in Two Pieces Has Almost Full Activity in Escherichia coli K-12. Journal of Bacteriology, 2017, 199, .	2.2	6
14	Spatially distinct and metabolically active membrane domain in mycobacteria. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5400-5405.	7.1	78
15	Structure and Function of the PriC DNA Replication Restart Protein. Journal of Biological Chemistry, 2016, 291, 18384-18396.	3.4	17
16	Directed Evolution of RecA Variants with Enhanced Capacity for Conjugational Recombination. PLoS Genetics, 2015, 11, e1005278.	3.5	22
17	Structural mechanisms of PriA-mediated DNA replication restart. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1373-1378.	7.1	94
18	Vive la résistance!. ELife, 2014, 3, e02387.	6.0	0

#	Article	IF	CITATIONS
19	Specificity in suppression of SOS expression by recA4162 and uvrD303. DNA Repair, 2013, 12, 1072-1080.	2.8	7
20	PriC-mediated DNA Replication Restart Requires PriC Complex Formation with the Single-stranded DNA-binding Protein. Journal of Biological Chemistry, 2013, 288, 17569-17578.	3.4	47
21	Mu Insertions Are Repaired by the Double-Strand Break Repair Pathway of Escherichia coli. PLoS Genetics, 2012, 8, e1002642.	3.5	20
22	Physical manipulation of the <i>Escherichia coli</i> chromosome reveals its soft nature. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E2649-56.	7.1	187
23	Factors Limiting SOS Expression in Log-Phase Cells of Escherichia coli. Journal of Bacteriology, 2012, 194, 5325-5333.	2.2	20
24	Structure of the SSB-DNA polymerase III interface and its role in DNA replication. EMBO Journal, 2011, 30, 4236-4247.	7.8	132
25	RecA4142 Causes SOS Constitutive Expression by Loading onto Reversed Replication Forks in <i>Escherichia coli</i> K-12. Journal of Bacteriology, 2010, 192, 2575-2582.	2.2	10
26	UvrD303, a Hyperhelicase Mutant That Antagonizes RecA-Dependent SOS Expression by a Mechanism That Depends on Its C Terminus. Journal of Bacteriology, 2009, 191, 1429-1438.	2.2	23
27	Single Molecule Analysis of a Red Fluorescent RecA Protein Reveals a Defect in Nucleoprotein Filament Nucleation That Relates to Its Reduced Biological Functions. Journal of Biological Chemistry, 2009, 284, 18664-18673.	3.4	23
28	Suppression of constitutive SOS expression by <i>recA4162</i> (I298V) and <i>recA4164</i> (L126V) requires UvrD and RecX in <i>Escherichia coli</i> Kâ€12. Molecular Microbiology, 2009, 73, 226-239.	2.5	10
29	XthA (Exonuclease III) regulates loading of RecA onto DNA substrates in log phase <i>Escherichia coli</i> cells. Molecular Microbiology, 2008, 67, 88-101.	2.5	28
30	Requirements for ATP binding and hydrolysis in RecA function in <i>Escherichia coli</i> Microbiology, 2008, 67, 1347-1359.	2.5	26
31	RecAâ€mediated SOS induction requires an extended filament conformation but no ATP hydrolysis. Molecular Microbiology, 2008, 69, 1165-1179.	2.5	41
32	Differential Requirements of Two recA Mutants for Constitutive SOS Expression in Escherichia coli K-12. PLoS ONE, 2008, 3, e4100.	2.5	17
33	UvrD Limits the Number and Intensities of RecA-Green Fluorescent Protein Structures in Escherichia coli K-12. Journal of Bacteriology, 2007, 189, 2915-2920.	2.2	44
34	A Hand-Off Mechanism for Primosome Assembly in Replication Restart. Molecular Cell, 2007, 26, 781-793.	9.7	72
35	Dinl and RecX modulate RecA?DNA structures in Escherichia coli K-12. Molecular Microbiology, 2007, 63, 103-115.	2.5	36
36	A novel dnaC mutation that suppresses priB rep mutant phenotypes in Escherichia coli K-12. Molecular Microbiology, 2006, 60, 973-983.	2.5	15

#	Article	IF	Citations
37	Localization of RecA in Escherichiaâ€∫coli K-12 using RecA-GFP. Molecular Microbiology, 2005, 57, 1074-1085.	2.5	109
38	Requirements for Replication Restart Proteins During Constitutive Stable DNA Replication in Escherichia coli K-12. Genetics, 2005, 169, 1799-1806.	2.9	39
39	A dnaT Mutant With Phenotypes Similar to Those of a priA2::kan Mutant in Escherichia coli K-12Sequence data from this article have been deposited with the EMBL/GenBank Data Libraries under accession nos. AY331182 and AY331181 Genetics, 2004, 167, 569-578.	2.9	37
40	Measurement of SOS expression in individual Escherichia coli K-12 cells using fluorescence microscopy. Molecular Microbiology, 2004, 53, 1343-1357.	2.5	164
41	Allele specific synthetic lethality between priC and dnaAts alleles at the permissive temperature of 30 degrees C in E. coli K-12. BMC Microbiology, 2004, 4, 47.	3.3	12
42	PriA mutations that affect PriA-PriC function during replication restart. Molecular Microbiology, 2001, 41, 697-704.	2.5	56
43	The importance of repairing stalled replication forks. Nature, 2000, 404, 37-41.	27.8	1,008
44	Role of PriA in Replication Fork Reactivation in <i>Escherichia coli</i> . Journal of Bacteriology, 2000, 182, 9-13.	2.2	205
45	Multiple Genetic Pathways for Restarting DNA Replication Forks in <i>Escherichia coli</i> K-12. Genetics, 2000, 155, 487-497.	2.9	150
46	dnaC mutations suppress defects in DNA replication- and recombination-associated functions in priB and priC double mutants in Escherichia coli K-12. Molecular Microbiology, 1999, 34, 91-101.	2.5	86
47	Diversity of radA Genes from Cultured and Uncultured Archaea : Comparative Analysis of Putative RadA Proteins and Their Use as a Phylogenetic Marker. Journal of Bacteriology, 1999, 181, 907-915.	2.2	54
48	Evolutionary Comparisons of RecA-Like Proteins Across All Major Kingdoms of Living Organisms. Journal of Molecular Evolution, 1997, 44, 528-541.	1.8	125
49	Overlapping functions for recF and priA in cell viability and UV-inducible SOS expression are distinguished by dnaC809 in Escherichia coli K-12. Molecular Microbiology, 1996, 19, 871-880.	2.5	55
50	recA-like genes from three archaean species with putative protein products similar to Rad51 and Dmc1 proteins of the yeast Saccharomyces cerevisiae. Nucleic Acids Research, 1996, 24, 2125-2132.	14.5	118
51	Differential Suppression of <i>priA2::kan</i> Phenotypes in <i>Escherichia coli</i> K-12 by Mutations in <i>priA, lexA</i> , and <i>danaC</i> . Genetics, 1996, 143, 5-13.	2.9	173
52	recO and recR mutations delay induction of the SOS response in Escherichia coli. Molecular Genetics and Genomics, 1995, 246, 254-258.	2.4	59
53	Homologous Genetic Recombination: The Pieces Begin to Fall into Place. Critical Reviews in Microbiology, 1994, 20, 125-142.	6.1	206
54	Studies on the mechanism of reduction of W-inducible sulAp expression by recF overexpression in Escherichia coli K-12. Molecular Genetics and Genomics, 1994, 245, 741-749.	2.4	21

ARTICLE IF CITATIONS

55 RecA-Dependent Mechanisms for the Generation of Genetic Diversity. , 0, , 21-35. 0