
Geert Haesaert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8614447/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Green leaf volatile production by plants: a metaâ€analysis. New Phytologist, 2018, 220, 666-683.	7.3	247
2	Deoxynivalenol: A Major Player in the Multifaceted Response of Fusarium to Its Environment. Toxins, 2014, 6, 1-19.	3.4	206
3	The use of microalgae as a high-value organic slow-release fertilizer results in tomatoes with increased carotenoid and sugar levels. Journal of Applied Phycology, 2016, 28, 2367-2377.	2.8	199
4	Priming of Wheat with the Green Leaf Volatile <i>Z</i> -3-Hexenyl Acetate Enhances Defense against <i>Fusarium graminearum</i> But Boosts Deoxynivalenol Production. Plant Physiology, 2015, 167, 1671-1684.	4.8	110
5	Occurrence, prevention and remediation of toxigenic fungi and mycotoxins in silage: a review. Journal of the Science of Food and Agriculture, 2016, 96, 2284-2302.	3.5	89
6	Purple nonâ€sulphur bacteria and plant production: benefits for fertilization, stress resistance and the environment. Microbial Biotechnology, 2020, 13, 1336-1365.	4.2	70
7	Living apart together: crosstalk between the core and supernumerary genomes in a fungal plant pathogen. BMC Genomics, 2016, 17, 670.	2.8	53
8	Local post-harvest practices associated with aflatoxin and fumonisin contamination of maize in three agro ecological zones of Tanzania. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2016, 33, 551-559.	2.3	49
9	Perspectives on Global Mycotoxin Issues and Management From the MycoKey Maize Working Group. Plant Disease, 2021, 105, 525-537.	1.4	47
10	Mycotoxins in Flanders' Fields: Occurrence and Correlations with Fusarium Species in Whole-Plant Harvested Maize. Microorganisms, 2019, 7, 571.	3.6	46
11	Automatic wheat ear counting using machine learning based on RGB UAV imagery. Plant Journal, 2020, 103, 1603-1613.	5.7	39
12	Identification of A. arborescens, A. grandis, and A. protenta as new members of the European Alternaria population on potato. Fungal Biology, 2017, 121, 172-188.	2.5	38
13	Fungal Endophytes Control Fusarium graminearum and Reduce Trichothecenes and Zearalenone in Maize. Toxins, 2018, 10, 493.	3.4	38
14	Risk of Exposure to Multiple Mycotoxins from Maize-Based Complementary Foods in Tanzania. Journal of Agricultural and Food Chemistry, 2017, 65, 7106-7114.	5.2	37
15	Fusarium basal rot: profile of an increasingly important disease in Allium spp Tropical Plant Pathology, 2021, 46, 241-253.	1.5	35
16	Multi-Mycotoxin Contamination of Maize Silages in Flanders, Belgium: Monitoring Mycotoxin Levels from Seed to Feed. Toxins, 2021, 13, 202.	3.4	33
17	In Vitro Rumen Simulations Show a Reduced Disappearance of Deoxynivalenol, Nivalenol and Enniatin B at Conditions of Rumen Acidosis and Lower Microbial Activity. Toxins, 2020, 12, 101.	3.4	32
18	The compositional mosaic of Fusarium species and their mycotoxins in unprocessed cereals, food and feed products in Belgium. International Journal of Food Microbiology, 2014, 181, 28-36.	4.7	31

GEERT HAESAERT

#	Article	IF	CITATIONS
19	Storage, fertilization and cost properties highlight the potential of dried microbial biomass as organic fertilizer. Microbial Biotechnology, 2020, 13, 1377-1389.	4.2	28
20	Stomatal Behavior of Cowpea Genotypes Grown Under Varying Moisture Levels. Sustainability, 2018, 10, 12.	3.2	27
21	Phosphorus mining for ecological restoration on former agricultural land. Restoration Ecology, 2015, 23, 842-851.	2.9	25
22	Genetic Divergence and Chemotype Diversity in the Fusarium Head Blight Pathogen Fusarium poae. Toxins, 2017, 9, 255.	3.4	25
23	The plant response induced in wheat ears by a combined attack of <i>Sitobion avenae</i> aphids and <i>Fusarium graminearum</i> boosts fungal infection and deoxynivalenol production. Molecular Plant Pathology, 2017, 18, 98-109.	4.2	19
24	Development of an UPLC-MS/MS Method for the Analysis of Mycotoxins in Rumen Fluid with and without Maize Silage Emphasizes the Importance of Using Matrix-Matched Calibration. Toxins, 2019, 11, 519.	3.4	19
25	ls nodding syndrome in northern Uganda linked to consumption of mycotoxin contaminated food grains?. BMC Research Notes, 2018, 11, 678.	1.4	18
26	Prevalence of aflatoxin, ochratoxin and deoxynivalenol in cereal grains in northern Uganda: Implication for food safety and health. Toxicology Reports, 2019, 6, 1012-1017.	3.3	18
27	Metabolomics Reveal Induction of ROS Production and Glycosylation Events in Wheat Upon Exposure to the Green Leaf Volatile Z-3-Hexenyl Acetate. Frontiers in Plant Science, 2020, 11, 596271.	3.6	17
28	Respiratory CO2 Combined With a Blend of Volatiles Emitted by Endophytic Serendipita Strains Strongly Stimulate Growth of Arabidopsis Implicating Auxin and Cytokinin Signaling. Frontiers in Plant Science, 2020, 11, 544435.	3.6	17
29	Green Leaf Volatile Confers Management of Late Blight Disease: A Green Vaccination in Potato. Journal of Fungi (Basel, Switzerland), 2021, 7, 312.	3.5	17
30	Vp1 expression profiles during kernel development in six genotypes of wheat, triticale and rye. Euphytica, 2012, 188, 61-70.	1.2	14
31	Biotic stresses in the anthropogenic hybrid triticale (×Triticosecale Wittmack): current knowledge and breeding challenges. European Journal of Plant Pathology, 2014, 140, 615-630.	1.7	14
32	Analysis of population structure and genetic diversity reveals gene flow and geographic patterns in cultivated rice (O. sativa and O. glaberrima) in West Africa. Euphytica, 2018, 214, 1.	1.2	14
33	Control of Fusarium verticillioides (Sacc.) Nirenberg and Fumonisins by Using a Combination of Crop Protection Products and Fertilization. Toxins, 2018, 10, 67.	3.4	14
34	Relevance of hop terroir for beer flavour. Journal of the Institute of Brewing, 2021, 127, 238-247.	2.3	14
35	Effect of Phosphorus and Arbuscular Mycorrhizal Fungi (AMF) Inoculation on Growth and Productivity of Maize (Zea maysÂL.) in aÂTropical Ferralsol. Gesunde Pflanzen, 2022, 74, 159-165.	3.0	13
36	α-Amylase gene expression during kernel development in relation to pre-harvest sprouting in wheat and triticale. Acta Physiologiae Plantarum, 2013, 35, 2927-2938.	2.1	12

GEERT HAESAERT

#	Article	IF	CITATIONS
37	A comparison of the nutritional value of Einkorn, Emmer, Khorasan and modern wheat: whole grains, processed in bread, and populationâ€level intake implications. Journal of the Science of Food and Agriculture, 2020, 100, 4108-4118.	3.5	11
38	ldentifying drivers of spatioâ€ŧemporal dynamics in barley yellow dwarf virus epidemiology as a critical factor in disease control. Pest Management Science, 2020, 76, 2548-2556.	3.4	11
39	Highlight report: Mycotoxins as food contaminants in Africa—challenges and perspectives. Archives of Toxicology, 2018, 92, 2151-2152.	4.2	10
40	Sebacinoids within rhizospheric fungal communities associated with subsistence farming in the Congo Basin: a needle in each haystack. FEMS Microbiology Ecology, 2019, 95, .	2.7	10
41	Inter- and Intrafield Distribution of Cereal Leaf Beetle Species (Coleoptera: Chrysomelidae) in Belgian Winter Wheat. Environmental Entomology, 2019, 48, 276-283.	1.4	10
42	Evaluation of the Efficacy of Mycotoxin Modifiers and Mycotoxin Binders by Using an In Vitro Rumen Model as a First Screening Tool. Toxins, 2020, 12, 405.	3.4	10
43	Multi-sensors data fusion approach for site-specific seeding of consumption and seed potato production. Precision Agriculture, 2021, 22, 1890-1917.	6.0	10
44	Site-specific seeding for maize production using management zone maps delineated with multi-sensors data fusion scheme. Soil and Tillage Research, 2022, 220, 105377.	5.6	10
45	Exploration of essential oils as alternatives to conventional fungicides in lupin cultivation. Organic Agriculture, 2019, 9, 107-116.	2.4	9
46	Uncovering the biofumigant capacity of allyl isothiocyanate from several Brassicaceae crops against Fusarium pathogens in maize. Journal of the Science of Food and Agriculture, 2020, 100, 5476-5486.	3.5	9
47	Population, Virulence, and Mycotoxin Profile of <i>Fusarium</i> spp. Associated With Basal Rot of <i>Allium</i> spp. in Vietnam. Plant Disease, 2021, 105, 1942-1950.	1.4	9
48	Screening Cowpea Genotypes for High Biological Nitrogen Fixation and Grain Yield under Drought Conditions. Agronomy Journal, 2018, 110, 1925-1935.	1.8	8
49	Essential descriptors for mycotoxin contamination data in food and feed. Food Research International, 2022, 152, 110883.	6.2	8
50	Osmotic Adjustment in Wheat (Triticum aestivum L.) During Pre- and Post-anthesis Drought. Frontiers in Plant Science, 2022, 13, 775652.	3.6	8
51	Aerobes and phototrophs as microbial organic fertilizers: Exploring mineralization, fertilization and plant protection features. PLoS ONE, 2022, 17, e0262497.	2.5	8
52	Potentials and Limitations of Existing Forecasting Models for Alternaria on Potatoes: Challenges for Model Improvement. Potato Research, 2017, 60, 61-76.	2.7	6
53	Phosphorus mining efficiency declines with decreasing soil P concentration and varies across crop species. International Journal of Phytoremediation, 2018, 20, 939-946.	3.1	6
54	Phenologyâ€regulated defence mechanisms as drivers for Fusarium basal rot in onion (<i>Allium) Tj ETQq0 0 C</i>) rgBT /Over	lock 10 Tf 50

4

GEERT HAESAERT

#	Article	IF	CITATIONS
55	Effect of the mycotoxin deoxynivalenol on grain aphid Sitobion avenae and its parasitic wasp Aphidius ervi through food chain contamination. Arthropod-Plant Interactions, 2016, 10, 323-329.	1.1	5
56	Clinical impact of deoxynivalenol, 3-acetyl-deoxynivalenol and 15-acetyl-deoxynivalenol on the severity of an experimental Mycoplasma hyopneumoniae infection in pigs. BMC Veterinary Research, 2018, 14, 190.	1.9	5
57	Present status of bacterial blight in cotton genotypes evaluated at Busia and Siaya counties of Western Kenya. European Journal of Plant Pathology, 2014, 139, 863-874.	1.7	4
58	Phytomining to re-establish phosphorus-poor soil conditions for nature restoration on former agricultural land. Plant and Soil, 2019, 440, 233-246.	3.7	4
59	Increasing of NPK Fertilizer Efficiency by Arbuscular Mycorrhiza in Common Bean (Phaseolus) Tj ETQq1 1 0.7843	14 _{.rg} BT /	Overlock 10 T
60	Genetic Characterization of Fungal Biodiversity in Storage Grains: Towards Enhancing Food Safety in Northern Uganda. Microorganisms, 2021, 9, 383.	3.6	4
61	Cucurbitaceae COld Peeling Extracts (CCOPEs) Protect Plants From Root-Knot Nematode Infections Through Induced Resistance and Nematicidal Effects. Frontiers in Plant Science, 2021, 12, 785699.	3.6	4
62	Early sowing and harvesting as effective measures to reduce stalk borer injury, Fusarium verticillioides incidence and associated fumonisin production in maize. Tropical Plant Pathology, 2019, 44, 151-161.	1.5	3
63	Evaluation of genome size and quantitative features of the dolipore septum as taxonomic predictors for the Serendipita †williamsii' species complex. Fungal Biology, 2020, 124, 781-800.	2.5	3
64	Combination of Potassium Phosphite and Reduced Doses of Fungicides Encourages Protection against Phytophthora infestans in Potatoes. Agriculture (Switzerland), 2022, 12, 189.	3.1	3
65	YIELD PERFORMANCE, CARBON ASSIMILATION AND SPECTRAL RESPONSE OF TRITICALE TO WATER STRESS. Experimental Agriculture, 2017, 53, 100-117.	0.9	2
66	Combining High Yields and Blast Resistance in Rice (Oryza spp.): A Screening under Upland and Lowland Conditions in Benin. Sustainability, 2018, 10, 2500.	3.2	2
67	Exploring genetic diversity and disease response of cultivated rice accessions (Oryza spp.) against Pyricularia oryzae under rainfed upland conditions in Benin. Genetic Resources and Crop Evolution, 2018, 65, 1615-1624.	1.6	2
68	Potentials and Limitations of a Growing Degree Day Approach to Predict the Phenology of Cereal Leaf Beetles. Environmental Entomology, 2018, 47, 1039-1046.	1.4	1
69	Does shifting from conventional to zero tillage in combination with a cover crop offers opportunities for silage maize cultivation in Flanders?. Journal of Plant Nutrition and Soil Science, 2019, 182, 980-989.	1.9	1
70	Characterization of Ugandan Endemic Aspergillus Species and Identification of Non-Aflatoxigenic Isolates for Potential Biocontrol of Aflatoxins. Toxins, 2022, 14, 304.	3.4	1
71	Cover Image, Volume 76, Issue 8. Pest Management Science, 2020, 76, .	3.4	0
72	Development of a taxon-discriminating molecular marker to trace and quantify a mycorrhizal inoculum in roots and soils of agroecosystems. Folia Microbiologica, 2021, 66, 371-384.	2.3	0